These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 3747579)
1. Electron microscopic studies: importance of embedding techniques in quantitative evaluation of cardiac mitochondrial structure during regional ischemia and reperfusion. Sjostrand F; Allen BS; Buckberg GD; Okamoto F; Young H; Bugyi H; Beyersdorf F; Barnard RJ; Leaf J J Thorac Cardiovasc Surg; 1986 Sep; 92(3 Pt 2):513-24. PubMed ID: 3747579 [TBL] [Abstract][Full Text] [Related]
2. Immediate functional recovery after six hours of regional ischemia by careful control of conditions of reperfusion and composition of reperfusate. Allen BS; Okamoto F; Buckberg GD; Bugyi H; Young H; Leaf J; Beyersdorf F; Sjostrand F; Maloney JV J Thorac Cardiovasc Surg; 1986 Sep; 92(3 Pt 2):621-35. PubMed ID: 2875224 [TBL] [Abstract][Full Text] [Related]
3. Regional blood cardioplegic reperfusion during total vented bypass without thoracotomy: a new concept. Okamoto F; Allen BS; Buckberg GD; Schwaiger M; Leaf J; Bugyi H; Chen A; Yeatman L; Maloney JV J Thorac Cardiovasc Surg; 1986 Sep; 92(3 Pt 2):553-63. PubMed ID: 3747583 [TBL] [Abstract][Full Text] [Related]
4. Studies on prolonged acute regional ischemia. I. Evidence for preserved cellular viability after 6 hours of coronary occlusion. Beyersdorf F; Allen BS; Buckberg GD; Acar C; Okamoto F; Sjöstrand F; Young HH; Bugyi HI J Thorac Cardiovasc Surg; 1989 Jul; 98(1):112-26. PubMed ID: 2739417 [TBL] [Abstract][Full Text] [Related]
5. Biochemical studies: failure of tissue adenosine triphosphate levels to predict recovery of contractile function after controlled reperfusion. Rosenkranz ER; Okamoto F; Buckberg GD; Vinten-Johansen J; Allen BS; Leaf J; Bugyi H; Young H; Barnard RJ J Thorac Cardiovasc Surg; 1986 Sep; 92(3 Pt 2):488-501. PubMed ID: 3747577 [TBL] [Abstract][Full Text] [Related]
7. Superiority of surgical versus medical reperfusion after regional ischemia. Vinten-Johansen J; Buckberg GD; Okamoto F; Rosenkranz ER; Bugyi H; Leaf J J Thorac Cardiovasc Surg; 1986 Sep; 92(3 Pt 2):525-34. PubMed ID: 3747580 [TBL] [Abstract][Full Text] [Related]
8. Information and misinformation regarding ischemia of heart muscle tissue. The cause of cell death during blood reperfusion and reactivation of heart muscle tissue after prolonged ischemia. Sjöstrand FS Scanning Microsc; 1992 Dec; 6(4):1041-58; discussion 1058-60. PubMed ID: 1295075 [TBL] [Abstract][Full Text] [Related]
9. Effects of "duration" of reperfusate administration versus reperfusate "dose" on regional functional, biochemical, and histochemical recovery. Allen BS; Okamoto F; Buckberg GD; Leaf J; Bugyi H J Thorac Cardiovasc Surg; 1986 Sep; 92(3 Pt 2):594-604. PubMed ID: 3747587 [TBL] [Abstract][Full Text] [Related]
10. Recovery of the heart after normothermic ischemia. Part I: Ultrastructural findings during postischemic reperfusion. Mulch J; Schaper J; Scheld HH; Hehrlein FW Thorac Cardiovasc Surg; 1979 Feb; 27(1):12-7. PubMed ID: 442056 [TBL] [Abstract][Full Text] [Related]
11. Ultrastructural evaluation of the effects of global ischemia and reperfusion on human myocardium. Schaper J; Schwarz F; Kittstein H; Kreisel E; Winkler B; Hehrlein FW Thorac Cardiovasc Surg; 1980 Oct; 28(5):337-42. PubMed ID: 6161432 [TBL] [Abstract][Full Text] [Related]
12. Metabolic and histochemical benefits of regional blood cardioplegic reperfusion without cardiopulmonary bypass. Vinten-Johansen J; Rosenkranz ER; Buckberg GD; Leaf J; Bugyi H J Thorac Cardiovasc Surg; 1986 Sep; 92(3 Pt 2):535-42. PubMed ID: 3747581 [TBL] [Abstract][Full Text] [Related]
13. Reperfusate composition: supplemental role of intravenous and intracoronary coenzyme Q10 in avoiding reperfusion damage. Okamoto F; Allen BS; Buckberg GD; Leaf J; Bugyi H J Thorac Cardiovasc Surg; 1986 Sep; 92(3 Pt 2):573-82. PubMed ID: 3747585 [TBL] [Abstract][Full Text] [Related]
16. Effects of reperfusion after acute coronary occlusion on the beating, working heart compared to the arrested heart treated locally and globally with cardioplegia. Franco KL; Uretzky G; Paolini D; Milton G; Cohn LH J Thorac Cardiovasc Surg; 1984 Apr; 87(4):561-6. PubMed ID: 6608639 [TBL] [Abstract][Full Text] [Related]
17. Preservation of cardiac myocytes subjected to different preconditions: a comparative morphometric study of beating, fibrillating, and cardioplegically arrested canine hearts. Schmiedl A; Schnabel PA; Richter J; Mall G; Bretschneider HJ Anat Rec; 1993 Mar; 235(3):425-35. PubMed ID: 8430912 [TBL] [Abstract][Full Text] [Related]
18. Comparing the ultrastructural effects of two different cardiac preparation- and perfusion-techniques in a porcine model of extracorporal long-term preservation. Aupperle H; Garbade J; Ullmann C; Schneider K; Krautz C; Dhein S; Gummert JF; Schoon HA Eur J Cardiothorac Surg; 2007 Feb; 31(2):214-21. PubMed ID: 17182251 [TBL] [Abstract][Full Text] [Related]
19. Reperfusate composition: interaction of marked hyperglycemia and marked hyperosmolarity in allowing immediate contractile recovery after four hours of regional ischemia. Okamoto F; Allen BS; Buckberg GD; Young H; Bugyi H; Leaf J J Thorac Cardiovasc Surg; 1986 Sep; 92(3 Pt 2):583-93. PubMed ID: 3747586 [TBL] [Abstract][Full Text] [Related]
20. The relationship between myocardial temperature and recovery after experimental cardioplegic arrest. Rosenfeldt FL J Thorac Cardiovasc Surg; 1982 Nov; 84(5):656-66. PubMed ID: 7132405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]