BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37476003)

  • 1. Microcalorimetry reveals multi-state thermal denaturation of
    Chandrasekaran SN; Das J; Dokholyan NV; Carter CW
    Struct Dyn; 2023 Jul; 10(4):044301. PubMed ID: 37476003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput thermal denaturation of tryptophanyl-tRNA synthetase combinatorial mutants reveals high-order energetic coupling determinants of conformational stability.
    Weinreb V; Weinreb G; Carter CW
    Struct Dyn; 2023 Jul; 10(4):044304. PubMed ID: 37637481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational studies of tryptophanyl-tRNA synthetase: activation of ATP by induced-fit.
    Kapustina M; Carter CW
    J Mol Biol; 2006 Oct; 362(5):1159-80. PubMed ID: 16949606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations.
    Retailleau P; Huang X; Yin Y; Hu M; Weinreb V; Vachette P; Vonrhein C; Bricogne G; Roversi P; Ilyin V; Carter CW
    J Mol Biol; 2003 Jan; 325(1):39-63. PubMed ID: 12473451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of tryptophanyl-tRNA synthetase complexed with adenosine-5' tetraphosphate: evidence for distributed use of catalytic binding energy in amino acid activation by class I aminoacyl-tRNA synthetases.
    Retailleau P; Weinreb V; Hu M; Carter CW
    J Mol Biol; 2007 May; 369(1):108-28. PubMed ID: 17428498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escapement mechanisms: Efficient free energy transduction by reciprocally-coupled gating.
    Carter CW
    Proteins; 2020 May; 88(5):710-717. PubMed ID: 31743491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced amino acid selection in fully evolved tryptophanyl-tRNA synthetase, relative to its urzyme, requires domain motion sensed by the D1 switch, a remote dynamic packing motif.
    Weinreb V; Li L; Chandrasekaran SN; Koehl P; Delarue M; Carter CW
    J Biol Chem; 2014 Feb; 289(7):4367-76. PubMed ID: 24394410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Inhibition of Bacterial Tryptophanyl-tRNA Synthetases by Indolmycin Is Mechanism-based.
    Williams TL; Yin YW; Carter CW
    J Biol Chem; 2016 Jan; 291(1):255-65. PubMed ID: 26555258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining multi-mutant and modular thermodynamic cycles to measure energetic coupling networks in enzyme catalysis.
    Carter CW; Chandrasekaran SN; Weinreb V; Li L; Williams T
    Struct Dyn; 2017 May; 4(3):032101. PubMed ID: 28191480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic characterization of cytochrome c at low pH. Observation of the molten globule state and of the cold denaturation process.
    Kuroda Y; Kidokoro S; Wada A
    J Mol Biol; 1992 Feb; 223(4):1139-53. PubMed ID: 1311387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase.
    Doublié S; Bricogne G; Gilmore C; Carter CW
    Structure; 1995 Jan; 3(1):17-31. PubMed ID: 7743129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Ancestral Tryptophanyl-tRNA Synthetase Precursor Achieves High Catalytic Rate Enhancement without Ordered Ground-State Tertiary Structures.
    Sapienza PJ; Li L; Williams T; Lee AL; Carter CW
    ACS Chem Biol; 2016 Jun; 11(6):1661-8. PubMed ID: 27008438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independent saturation of three TrpRS subsites generates a partially assembled state similar to those observed in molecular simulations.
    Laowanapiban P; Kapustina M; Vonrhein C; Delarue M; Koehl P; Carter CW
    Proc Natl Acad Sci U S A; 2009 Feb; 106(6):1790-5. PubMed ID: 19174517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92.
    Hogue CW; Doublié S; Xue H; Wong JT; Carter CW; Szabo AG
    J Mol Biol; 1996 Jul; 260(3):446-66. PubMed ID: 8757806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A master switch couples Mg²⁺-assisted catalysis to domain motion in B. stearothermophilus tryptophanyl-tRNA Synthetase.
    Weinreb V; Li L; Carter CW
    Structure; 2012 Jan; 20(1):128-38. PubMed ID: 22244762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of tryptophanyl-tRNA synthetase II from Deinococcus radiodurans bound to ATP and tryptophan. Insight into subunit cooperativity and domain motions linked to catalysis.
    Buddha MR; Crane BR
    J Biol Chem; 2005 Sep; 280(36):31965-73. PubMed ID: 15998643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic stability of the molten globule states of apomyoglobin.
    Nishii I; Kataoka M; Goto Y
    J Mol Biol; 1995 Jul; 250(2):223-38. PubMed ID: 7608972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conformational transition state accompanies tryptophan activation by B. stearothermophilus tryptophanyl-tRNA synthetase.
    Kapustina M; Weinreb V; Li L; Kuhlman B; Carter CW
    Structure; 2007 Oct; 15(10):1272-84. PubMed ID: 17937916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full implementation of the genetic code by tryptophanyl-tRNA synthetase requires intermodular coupling.
    Li L; Carter CW
    J Biol Chem; 2013 Nov; 288(48):34736-45. PubMed ID: 24142809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase.
    Merritt EA; Arakaki TL; Gillespie R; Napuli AJ; Kim JE; Buckner FS; Van Voorhis WC; Verlinde CL; Fan E; Zucker F; Hol WG
    Mol Biochem Parasitol; 2011 May; 177(1):20-8. PubMed ID: 21255615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.