These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37476515)

  • 1. Neural ordinary differential equations with irregular and noisy data.
    Goyal P; Benner P
    R Soc Open Sci; 2023 Jul; 10(7):221475. PubMed ID: 37476515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridging pharmacology and neural networks: A deep dive into neural ordinary differential equations.
    Losada IB; Terranova N
    CPT Pharmacometrics Syst Pharmacol; 2024 Jul; ():. PubMed ID: 38992975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating Neural ODEs Using Model Order Reduction.
    Lehtimaki M; Paunonen L; Linne ML
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; 35(1):519-531. PubMed ID: 35617183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stiff neural ordinary differential equations.
    Kim S; Ji W; Deng S; Ma Y; Rackauckas C
    Chaos; 2021 Sep; 31(9):093122. PubMed ID: 34598467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-driven Tissue Mechanics with Polyconvex Neural Ordinary Differential Equations.
    Tac V; Sahli Costabal F; Tepole AB
    Comput Methods Appl Mech Eng; 2022 Aug; 398():. PubMed ID: 38045634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations.
    Chen X; Araujo FA; Riou M; Torrejon J; Ravelosona D; Kang W; Zhao W; Grollier J; Querlioz D
    Nat Commun; 2022 Feb; 13(1):1016. PubMed ID: 35197449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpretable polynomial neural ordinary differential equations.
    Fronk C; Petzold L
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning Polymorphic Neural ODEs With Time-Evolving Mixture.
    Yoon T; Shin S; Yang E
    IEEE Trans Pattern Anal Mach Intell; 2023 Jan; 45(1):712-721. PubMed ID: 35077356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of nonlinear dynamical systems using a Runge-Kutta inspired dictionary-based sparse regression approach.
    Goyal P; Benner P
    Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20210883. PubMed ID: 35756880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-driven reduced-order modeling of spatiotemporal chaos with neural ordinary differential equations.
    Linot AJ; Graham MD
    Chaos; 2022 Jul; 32(7):073110. PubMed ID: 35907719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust data-driven discovery of governing physical laws with error bars.
    Zhang S; Lin G
    Proc Math Phys Eng Sci; 2018 Sep; 474(2217):20180305. PubMed ID: 30333709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collocation based training of neural ordinary differential equations.
    Roesch E; Rackauckas C; Stumpf MPH
    Stat Appl Genet Mol Biol; 2021 Jul; 20(2):37-49. PubMed ID: 34237805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid neural ordinary differential equation model of the cardiovascular system.
    Grigorian G; George SV; Lishak S; Shipley RJ; Arridge S
    J R Soc Interface; 2024 Mar; 21(212):20230710. PubMed ID: 38503338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDE-LEARN: Using deep learning to discover partial differential equations from noisy, limited data.
    Stephany R; Earls C
    Neural Netw; 2024 Jun; 174():106242. PubMed ID: 38521016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergent Spaces for Coupled Oscillators.
    Thiem TN; Kooshkbaghi M; Bertalan T; Laing CR; Kevrekidis IG
    Front Comput Neurosci; 2020; 14():36. PubMed ID: 32528268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Ordinary Differential Equation Models for Gene Regulatory Networks Through Data Cloning.
    Son D; Kim J
    J Comput Biol; 2023 May; 30(5):609-618. PubMed ID: 36898058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-driven discovery of the governing equations of dynamical systems via moving horizon optimization.
    Lejarza F; Baldea M
    Sci Rep; 2022 Jul; 12(1):11836. PubMed ID: 35821394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical neural ordinary differential equations.
    Zhao Y; Chen H; Lin M; Zhang H; Yan T; Huang R; Lin X; Dai Q
    Opt Lett; 2023 Feb; 48(3):628-631. PubMed ID: 36723549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cubature Kalman Filter Based Training of Hybrid Differential Equation Recurrent Neural Network Physiological Dynamic Models.
    Demirkaya A; Imbiriba T; Lockwood K; Rampersad S; Alhajjar E; Guidoboni G; Danziger Z; Erdogmus D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():763-766. PubMed ID: 34891402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.
    Ling H; Samarasinghe S; Kulasiri D
    Biosystems; 2013 Dec; 114(3):191-205. PubMed ID: 24012741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.