These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 37476860)
21. Evaluating and Comparing Flexure Strength of Dental Models Printed Using Fused Deposition Modelling, Digital Light Processing, and Stereolithography Apparatus Printers. Atwal N; Bhatnagar D Cureus; 2024 Feb; 16(2):e54312. PubMed ID: 38496206 [TBL] [Abstract][Full Text] [Related]
22. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Beauchamp MJ; Nordin GP; Woolley AT Anal Bioanal Chem; 2017 Jul; 409(18):4311-4319. PubMed ID: 28612085 [TBL] [Abstract][Full Text] [Related]
23. Emerging 3D printing technologies and methodologies for microfluidic development. Monia Kabandana GK; Zhang T; Chen C Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586 [TBL] [Abstract][Full Text] [Related]
24. Impact of internal design on the accuracy of 3-dimensionally printed casts fabricated by stereolithography and digital light processing technology. Chen Y; Li H; Zhai Z; Nakano T; Ishigaki S J Prosthet Dent; 2023 Sep; 130(3):381.e1-381.e7. PubMed ID: 37482533 [TBL] [Abstract][Full Text] [Related]
25. 3D Printing a Mechanically-Tunable Acrylate Resin on a Commercial DLP-SLA Printer. Borrello J; Nasser P; Iatridis J; Costa KD Addit Manuf; 2018 Oct; 23():374-380. PubMed ID: 31106119 [TBL] [Abstract][Full Text] [Related]
26. Research highlights: printing the future of microfabrication. Tseng P; Murray C; Kim D; Di Carlo D Lab Chip; 2014 May; 14(9):1491-5. PubMed ID: 24671475 [TBL] [Abstract][Full Text] [Related]
27. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems. Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326 [TBL] [Abstract][Full Text] [Related]
28. Fabrication of 3D-printed molds for polydimethylsiloxane-based microfluidic devices using a liquid crystal display-based vat photopolymerization process: printing quality, drug response and 3D invasion cell culture assays. Poskus MD; Wang T; Deng Y; Borcherding S; Atkinson J; Zervantonakis IK Microsyst Nanoeng; 2023; 9():140. PubMed ID: 37954040 [TBL] [Abstract][Full Text] [Related]
29. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. Xu X; Awad A; Robles-Martinez P; Gaisford S; Goyanes A; Basit AW J Control Release; 2021 Jan; 329():743-757. PubMed ID: 33031881 [TBL] [Abstract][Full Text] [Related]
30. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants. Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506 [TBL] [Abstract][Full Text] [Related]
31. 3D printed microfluidic devices for lipid bilayer recordings. Ogishi K; Osaki T; Morimoto Y; Takeuchi S Lab Chip; 2022 Mar; 22(5):890-898. PubMed ID: 35133381 [TBL] [Abstract][Full Text] [Related]
32. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion. Mehta V; Vilikkathala Sudhakaran S; Rath SN ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888 [TBL] [Abstract][Full Text] [Related]
33. Microfluidic devices manufacturing with a stereolithographic printer for biological applications. Carnero B; Bao-Varela C; Gómez-Varela AI; Álvarez E; Flores-Arias MT Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112388. PubMed ID: 34579907 [TBL] [Abstract][Full Text] [Related]
34. A 3D printed microfluidic perfusion device for multicellular spheroid cultures. Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043 [TBL] [Abstract][Full Text] [Related]
35. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Pagac M; Hajnys J; Ma QP; Jancar L; Jansa J; Stefek P; Mesicek J Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33671195 [TBL] [Abstract][Full Text] [Related]
36. Bioprinting on Organ-on-Chip: Development and Applications. Chliara MA; Elezoglou S; Zergioti I Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551101 [TBL] [Abstract][Full Text] [Related]
37. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Gong H; Bickham BP; Woolley AT; Nordin GP Lab Chip; 2017 Aug; 17(17):2899-2909. PubMed ID: 28726927 [TBL] [Abstract][Full Text] [Related]
38. A review on fabricating tissue scaffolds using vat photopolymerization. Chartrain NA; Williams CB; Whittington AR Acta Biomater; 2018 Jul; 74():90-111. PubMed ID: 29753139 [TBL] [Abstract][Full Text] [Related]
39. High-Precision Stereolithography of Biomicrofluidic Devices. Kuo AP; Bhattacharjee N; Lee YS; Castro K; Kim YT; Folch A Adv Mater Technol; 2019 Jun; 4(6):. PubMed ID: 32490168 [TBL] [Abstract][Full Text] [Related]
40. Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications. Paoli R; Di Giuseppe D; Badiola-Mateos M; Martinelli E; Lopez-Martinez MJ; Samitier J Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669434 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]