BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37477020)

  • 1. EGFR/IGF1R Signaling Modulates Relaxation in Hypertrophic Cardiomyopathy.
    Algül S; Schuldt M; Manders E; Jansen V; Schlossarek S; de Goeij-de Haas R; Henneman AA; Piersma SR; Jimenez CR; Michels M; Carrier L; Helmes M; van der Velden J; Kuster DWD
    Circ Res; 2023 Aug; 133(5):387-399. PubMed ID: 37477020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of heterozygous and homozygous mouse models with the most common hypertrophic cardiomyopathy mutation MYBPC3
    Hilderink S; Schuldt M; Goebel M; Jansen VJ; Manders E; Moorman S; Dorsch LM; van Steenbeek FG; van der Velden J; Kuster DWD
    J Mol Cell Cardiol; 2023 Dec; 185():65-76. PubMed ID: 37844837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diltiazem prevents stress-induced contractile deficits in cardiomyocytes, but does not reverse the cardiomyopathy phenotype in Mybpc3-knock-in mice.
    Flenner F; Geertz B; Reischmann-Düsener S; Weinberger F; Eschenhagen T; Carrier L; Friedrich FW
    J Physiol; 2017 Jun; 595(12):3987-3999. PubMed ID: 28090637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling.
    Schramm C; Fine DM; Edwards MA; Reeb AN; Krenz M
    Am J Physiol Heart Circ Physiol; 2012 Jan; 302(1):H231-43. PubMed ID: 22058153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ranolazine Prevents Phenotype Development in a Mouse Model of Hypertrophic Cardiomyopathy.
    Coppini R; Mazzoni L; Ferrantini C; Gentile F; Pioner JM; Laurino A; Santini L; Bargelli V; Rotellini M; Bartolucci G; Crocini C; Sacconi L; Tesi C; Belardinelli L; Tardiff J; Mugelli A; Olivotto I; Cerbai E; Poggesi C
    Circ Heart Fail; 2017 Mar; 10(3):. PubMed ID: 28255011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signaling network model of cardiomyocyte morphological changes in familial cardiomyopathy.
    Khalilimeybodi A; Riaz M; Campbell SG; Omens JH; McCulloch AD; Qyang Y; Saucerman JJ
    J Mol Cell Cardiol; 2023 Jan; 174():1-14. PubMed ID: 36370475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel insights on the relationship between T-tubular defects and contractile dysfunction in a mouse model of hypertrophic cardiomyopathy.
    Crocini C; Ferrantini C; Scardigli M; Coppini R; Mazzoni L; Lazzeri E; Pioner JM; Scellini B; Guo A; Song LS; Yan P; Loew LM; Tardiff J; Tesi C; Vanzi F; Cerbai E; Pavone FS; Sacconi L; Poggesi C
    J Mol Cell Cardiol; 2016 Feb; 91():42-51. PubMed ID: 26714042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dilated cardiomyopathy mutations in thin-filament regulatory proteins reduce contractility, suppress systolic Ca
    Robinson P; Sparrow AJ; Patel S; Malinowska M; Reilly SN; Zhang YH; Casadei B; Watkins H; Redwood C
    Am J Physiol Heart Circ Physiol; 2020 Aug; 319(2):H306-H319. PubMed ID: 32618513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translational investigation of electrophysiology in hypertrophic cardiomyopathy.
    Flenner F; Jungen C; Küpker N; Ibel A; Kruse M; Koivumäki JT; Rinas A; Zech ATL; Rhoden A; Wijnker PJM; Lemoine MD; Steenpass A; Girdauskas E; Eschenhagen T; Meyer C; van der Velden J; Patten-Hamel M; Christ T; Carrier L
    J Mol Cell Cardiol; 2021 Aug; 157():77-89. PubMed ID: 33957110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective phosphorylation of PKA targets after β-adrenergic receptor stimulation impairs myofilament function in Mybpc3-targeted HCM mouse model.
    Najafi A; Sequeira V; Helmes M; Bollen IA; Goebel M; Regan JA; Carrier L; Kuster DW; Van Der Velden J
    Cardiovasc Res; 2016 May; 110(2):200-14. PubMed ID: 26825555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterozygous deletion of AKT1 rescues cardiac contractility, but not hypertrophy, in a mouse model of Noonan Syndrome with Multiple Lentigines.
    Roy R; Krenz M
    J Mol Cell Cardiol; 2017 Nov; 112():83-90. PubMed ID: 28911943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling cardiomyocyte signaling and metabolism predicts genotype-to-phenotype mechanisms in hypertrophic cardiomyopathy.
    Khalilimeybodi A; Saucerman JJ; Rangamani P
    Comput Biol Med; 2024 Jun; 175():108499. PubMed ID: 38677172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress activated signalling impaired protein quality control pathways in human hypertrophic cardiomyopathy.
    Hassoun R; Budde H; Zhazykbayeva S; Herwig M; Sieme M; Delalat S; Mostafi N; Gömöri K; Tangos M; Jarkas M; Pabel S; Bruckmüller S; Skrygan M; Lódi M; Jaquet K; Sequeira V; Gambichler T; Remedios CD; Kovács Á; Mannherz HG; Mügge A; Sossalla S; Hamdani N
    Int J Cardiol; 2021 Dec; 344():160-169. PubMed ID: 34517018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inducible Pluripotent Stem Cell-Derived Cardiomyocytes Reveal Aberrant Extracellular Regulated Kinase 5 and Mitogen-Activated Protein Kinase Kinase 1/2 Signaling Concomitantly Promote Hypertrophic Cardiomyopathy in RAF1-Associated Noonan Syndrome.
    Jaffré F; Miller CL; Schänzer A; Evans T; Roberts AE; Hahn A; Kontaridis MI
    Circulation; 2019 Jul; 140(3):207-224. PubMed ID: 31163979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes.
    Tanaka A; Yuasa S; Mearini G; Egashira T; Seki T; Kodaira M; Kusumoto D; Kuroda Y; Okata S; Suzuki T; Inohara T; Arimura T; Makino S; Kimura K; Kimura A; Furukawa T; Carrier L; Node K; Fukuda K
    J Am Heart Assoc; 2014 Nov; 3(6):e001263. PubMed ID: 25389285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients.
    Wu H; Yang H; Rhee JW; Zhang JZ; Lam CK; Sallam K; Chang ACY; Ma N; Lee J; Zhang H; Blau HM; Bers DM; Wu JC
    Eur Heart J; 2019 Dec; 40(45):3685-3695. PubMed ID: 31219556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy.
    Coppini R; Ferrantini C; Yao L; Fan P; Del Lungo M; Stillitano F; Sartiani L; Tosi B; Suffredini S; Tesi C; Yacoub M; Olivotto I; Belardinelli L; Poggesi C; Cerbai E; Mugelli A
    Circulation; 2013 Feb; 127(5):575-84. PubMed ID: 23271797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingosine-1-Phosphate Receptor Modulator, FTY720, Improves Diastolic Dysfunction and Partially Reverses Atrial Remodeling in a Tm-E180G Mouse Model Linked to Hypertrophic Cardiomyopathy.
    Ryba DM; Warren CM; Karam CN; Davis RT; Chowdhury SAK; Alvarez MG; McCann M; Liew CW; Wieczorek DF; Varga P; Solaro RJ; Wolska BM
    Circ Heart Fail; 2019 Nov; 12(11):e005835. PubMed ID: 31684756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deficiency of Transcription Factor Sp1 Contributes to Hypertrophic Cardiomyopathy.
    Zhang F; Zhou H; Xue J; Zhang Y; Zhou L; Leng J; Fang G; Liu Y; Wang Y; Liu H; Wu Y; Qi L; Duan R; He X; Wang Y; Liu Y; Li L; Yang J; Liang D; Chen YH
    Circ Res; 2024 Feb; 134(3):290-306. PubMed ID: 38197258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo efficacy of the AKT inhibitor ARQ 092 in Noonan Syndrome with multiple lentigines-associated hypertrophic cardiomyopathy.
    Wang J; Chandrasekhar V; Abbadessa G; Yu Y; Schwartz B; Kontaridis MI
    PLoS One; 2017; 12(6):e0178905. PubMed ID: 28582432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.