These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37477097)

  • 1. First-principles Calculations Reveal Frictional Advantage for C
    Mukherjee M; Mandal S; Datta A
    Chem Asian J; 2023 Sep; 18(17):e202300525. PubMed ID: 37477097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superlubricity of a graphene/MoS
    Wang L; Zhou X; Ma T; Liu D; Gao L; Li X; Zhang J; Hu Y; Wang H; Dai Y; Luo J
    Nanoscale; 2017 Aug; 9(30):10846-10853. PubMed ID: 28726941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Band Gap Opening in Borophene/GaN and Borophene/ZnO Van der Waals Heterostructures Using Axial Deformation: First-Principles Study.
    Slepchenkov MM; Kolosov DA; Nefedov IS; Glukhova OE
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of interfacial friction in commensurate graphene/h-BN heterostructures by surface functionalization.
    Guo Y; Qiu J; Guo W
    Nanoscale; 2016 Jan; 8(1):575-80. PubMed ID: 26645099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-Scale Superlubricity in Ti
    Zhang Y; Chen X; Arramel ; Augustine KB; Zhang P; Jiang J; Wu Q; Li N
    ACS Omega; 2021 Apr; 6(13):9013-9019. PubMed ID: 33842771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Van Der Waals Heterostructures Based on Borophene, Graphene-like GaN and ZnO for Nanoelectronics: A First Principles Study.
    Slepchenkov MM; Kolosov DA; Glukhova OE
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twisting Dynamics of Large Lattice-Mismatch van der Waals Heterostructures.
    Liao M; Silva A; Du L; Nicolini P; Claerbout VEP; Kramer D; Yang R; Shi D; Polcar T; Zhang G
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19616-19623. PubMed ID: 37023057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interlayer Trions in the MoS
    Deilmann T; Thygesen KS
    Nano Lett; 2018 Feb; 18(2):1460-1465. PubMed ID: 29377700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures.
    Wang X; Zebarjadi M; Esfarjani K
    Nanoscale; 2016 Aug; 8(31):14695-704. PubMed ID: 27314610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double Indirect Interlayer Exciton in a MoSe
    Hanbicki AT; Chuang HJ; Rosenberger MR; Hellberg CS; Sivaram SV; McCreary KM; Mazin II; Jonker BT
    ACS Nano; 2018 May; 12(5):4719-4726. PubMed ID: 29727170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures.
    Liao M; Nicolini P; Du L; Yuan J; Wang S; Yu H; Tang J; Cheng P; Watanabe K; Taniguchi T; Gu L; Claerbout VEP; Silva A; Kramer D; Polcar T; Yang R; Shi D; Zhang G
    Nat Mater; 2022 Jan; 21(1):47-53. PubMed ID: 34354215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A π-Conjugated Van der Waals Heterostructure Between Single-Atom Ni-Anchored Salphen-Based Covalent Organic Framework and Polymeric Carbon Nitride for High-Efficiency Interfacial Charge Separation.
    Zhu L; Liang Z; Li H; Xu Q; Jiang D; Du H; Zhu C; Li H; Lu Z; Yuan Y
    Small; 2023 Aug; 19(33):e2301017. PubMed ID: 37066713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative Differential Friction Predicted in 2D Ferroelectric In
    Sun J; Zhang L; Pang R; Zhao XJ; Cheng J; Zhang Y; Xue X; Ren X; Zhu W; Li S; Zhang Z
    Adv Sci (Weinh); 2022 Jan; 9(2):e2103443. PubMed ID: 34761558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tribological behavior of graphene/h-BN vdW heterostructures: the role of defects at the BN layer.
    Han Z; Ru G; Li Y; Ma M
    J Phys Condens Matter; 2024 Jul; 36(42):. PubMed ID: 38976980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulating Charge and Energy Transfer between 2D Atomic Layers via Heterostructure Engineering.
    Liu X; Pei J; Hu Z; Zhao W; Liu S; Amara MR; Watanabe K; Taniguchi T; Zhang H; Xiong Q
    Nano Lett; 2020 Jul; 20(7):5359-5366. PubMed ID: 32543201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Band-Gap Landscape Engineering in Large-Scale 2D Semiconductor van der Waals Heterostructures.
    Zatko V; Dubois SM; Godel F; Carrétéro C; Sander A; Collin S; Galbiati M; Peiro J; Panciera F; Patriarche G; Brus P; Servet B; Charlier JC; Martin MB; Dlubak B; Seneor P
    ACS Nano; 2021 Apr; 15(4):7279-7289. PubMed ID: 33755422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic layer MoS
    Ye F; Lee J; Feng PX
    Nanoscale; 2017 Nov; 9(46):18208-18215. PubMed ID: 29160324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles theory of atomic-scale friction explored by an intuitive charge density fluctuation surface.
    Zhang B; Cheng Z; Zhang G; Lu Z; Ma F; Zhou F
    Phys Chem Chem Phys; 2019 Nov; 21(44):24565-24571. PubMed ID: 31663565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constructing van der Waals Heterogeneous Photocatalysts Based on Atomically Thin Carbon Nitride Sheets and Graphdiyne for Highly Efficient Photocatalytic Conversion of CO
    Wang Y; Zhang Y; Wang Y; Zeng C; Sun M; Yang D; Cao K; Pan H; Wu Y; Liu H; Yang R
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40629-40637. PubMed ID: 34415734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Friction Anisotropy in Few-Layer Van der Waals Crystals.
    Wang K; Li H; Guo Y
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.