These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37477256)

  • 21. Research on Spent LiFePO
    Zhu L; Chen M
    Int J Environ Res Public Health; 2020 Nov; 17(23):. PubMed ID: 33261047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct Regeneration of Degraded LiFePO
    Li C; Gong R; Zhang Y; Meng Q; Dong P
    Molecules; 2024 Jul; 29(14):. PubMed ID: 39064918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Capacity Fading Mechanism of the Commercial 18650 LiFePO
    Liu Q; Liu Y; Yang F; He H; Xiao X; Ren Y; Lu W; Stach E; Xie J
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4622-4629. PubMed ID: 29309119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lithium Clustering during the Lithiation/Delithiation Process in LiFePO
    Lu Y; Li J; Zhao Y; Zhu X
    ACS Omega; 2019 Dec; 4(24):20612-20617. PubMed ID: 31858047
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acid-Free and Selective Extraction of Lithium from Spent Lithium Iron Phosphate Batteries via a Mechanochemically Induced Isomorphic Substitution.
    Liu K; Tan Q; Liu L; Li J
    Environ Sci Technol; 2019 Aug; 53(16):9781-9788. PubMed ID: 31339306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile separation and regeneration of LiFePO
    Zhong X; Mao X; Qin W; Zeng H; Zhao G; Han J
    Waste Manag; 2023 Feb; 156():236-246. PubMed ID: 36495701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superstructure in the Metastable Intermediate-Phase Li2/3 FePO4 Accelerating the Lithium Battery Cathode Reaction.
    Nishimura S; Natsui R; Yamada A
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):8939-42. PubMed ID: 26074480
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Fu J; Wang K; Liu D; Zhang Z; Sui M; Yan P
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39245-39251. PubMed ID: 32805876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultra-fast recovery of cathode materials from spent LiFePO
    Zhu X; Chen C; Guo Q; Liu M; Zhang Y; Sun Z; Song H
    Waste Manag; 2023 Jul; 166():70-77. PubMed ID: 37156188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoscale Detection of Intermediate Solid Solutions in Equilibrated Li
    May BM; Yu YS; Holt MV; Strobridge FC; Boesenberg U; Grey CP; Cabana J
    Nano Lett; 2017 Dec; 17(12):7364-7371. PubMed ID: 29166027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined operando X-ray diffraction-electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries.
    Hess M; Sasaki T; Villevieille C; Novák P
    Nat Commun; 2015 Sep; 6():8169. PubMed ID: 26345306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct regeneration of spent LiFePO
    Yang J; Zhou K; Gong R; Meng Q; Zhang Y; Dong P
    J Environ Manage; 2023 Dec; 348():119384. PubMed ID: 37925982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential-Regulated Design for Direct Recycling of Degraded LiFePO
    Qiu X; Wang C; Chen Y; Du Z; Xie L; Han Q; Zhu L; Cao X; Ji X
    Small; 2024 Oct; 20(40):e2402278. PubMed ID: 38822712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recycling of electrode materials from spent lithium-ion power batteries via thermal and mechanical treatments.
    Wu Z; Zhu H; Bi H; He P; Gao S
    Waste Manag Res; 2021 Apr; 39(4):607-619. PubMed ID: 33200691
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acid-free mechanochemical process to enhance the selective recycling of spent LiFePO
    Zhang Q; Fan E; Lin J; Sun S; Zhang X; Chen R; Wu F; Li L
    J Hazard Mater; 2023 Feb; 443(Pt A):130160. PubMed ID: 36283216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size-Dependent Memory Effect of the LiFePO
    Guo X; Song B; Yu G; Wu X; Feng X; Li D; Chen Y
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41407-41414. PubMed ID: 30396271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ atomic force microscopy analysis of morphology and particle size changes in lithium iron phosphate cathode during discharge.
    Demirocak DE; Bhushan B
    J Colloid Interface Sci; 2014 Jun; 423():151-7. PubMed ID: 24703680
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct regeneration of LiFePO
    Huang M; Wang Z; Yang H; Yang L; Chen K; Yu H; Xu C; Guo Y; Shao P; Chen L; Luo X
    J Colloid Interface Sci; 2024 Oct; 679(Pt A):586-597. PubMed ID: 39388945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic Li
    Zhao XX; Wang XT; Guo JZ; Gu ZY; Cao JM; Yang JL; Lu FQ; Zhang JP; Wu XL
    Adv Mater; 2024 Apr; 36(14):e2308927. PubMed ID: 38174582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrothermal preparation and performance of LiFePO
    Wang X; Wang X; Zhang R; Wang Y; Shu H
    Waste Manag; 2018 Aug; 78():208-216. PubMed ID: 32559906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.