These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37477646)

  • 1. Variations in the Protein Hydration and Hydrogen-Bond Network of Water Molecules Induced by the Changes in the Secondary Structures of Proteins Studied through Near-Infrared Spectroscopy.
    Ishigaki M; Kato Y; Chatani E; Ozaki Y
    J Phys Chem B; 2023 Aug; 127(32):7111-7122. PubMed ID: 37477646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bovine serum albumin observed by infrared spectrometry. I. Methodology, structural investigation, and water uptake.
    Grdadolnik J; Maréchal Y
    Biopolymers; 2001; 62(1):40-53. PubMed ID: 11135191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of hydration water around human serum albumin using near-infrared spectroscopy.
    Dong Q; Yu C; Li L; Nie L; Zhang H; Zang H
    Int J Biol Macromol; 2019 Oct; 138():927-932. PubMed ID: 31362025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bovine serum albumin observed by infrared spectrometry. II. Hydration mechanisms and interaction configurations of embedded H(2)O molecules.
    Grdadolnik J; Maréchal Y
    Biopolymers; 2001; 62(1):54-67. PubMed ID: 11135192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-infrared analysis of protein secondary structure in aqueous solutions and freeze-dried solids.
    Izutsu K; Fujimaki Y; Kuwabara A; Hiyama Y; Yomota C; Aoyagi N
    J Pharm Sci; 2006 Apr; 95(4):781-9. PubMed ID: 16498574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen Bond Network of Water around Protein Investigated with Terahertz and Infrared Spectroscopy.
    Shiraga K; Ogawa Y; Kondo N
    Biophys J; 2016 Dec; 111(12):2629-2641. PubMed ID: 28002739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational spectroscopy of microhydrated conjugate base anions.
    Asmis KR; Neumark DM
    Acc Chem Res; 2012 Jan; 45(1):43-52. PubMed ID: 21675714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting Changes in Strongly and Weakly Bound Hydration Water of a Protein upon Denaturation.
    Hishida M; Kaneko A; Yamamura Y; Saito K
    J Phys Chem B; 2023 Jul; 127(28):6296-6305. PubMed ID: 37417885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary structure sensitivity of hydrogen bond lifetime dynamics in the protein hydration layer.
    Bandyopadhyay S; Chakraborty S; Bagchi B
    J Am Chem Soc; 2005 Nov; 127(47):16660-7. PubMed ID: 16305255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional near-IR correlation spectroscopy study of molten globule-like state of ovalbumin in acidic pH region: simultaneous changes in hydration and secondary structure.
    Murayama K; Ozaki Y
    Biopolymers; 2002; 67(6):394-405. PubMed ID: 12209447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration and Hydrogen Bond Network of Water during the Coil-to-Globule Transition in Poly(N-isopropylacrylamide) Aqueous Solution at Cloud Point Temperature.
    Shiraga K; Naito H; Suzuki T; Kondo N; Ogawa Y
    J Phys Chem B; 2015 Apr; 119(17):5576-87. PubMed ID: 25865253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the differences and similarities between urea and thermally driven denaturation of bovine serum albumin: intermolecular forces and solvation preferences.
    Nnyigide OS; Lee SG; Hyun K
    J Mol Model; 2018 Mar; 24(3):75. PubMed ID: 29497866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman Spectroscopy for the Competition of Hydrogen Bonds in Ternary (H
    Liu S; Zhang M; Huang B; Wu N; Ouyang S
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31614645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Structural Change in Protein Aqueous Solution Using Temperature-Dependent Near-Infrared Spectroscopy and Continuous Wavelet Transform.
    Fan M; Cai W; Shao X
    Appl Spectrosc; 2017 Mar; 71(3):472-479. PubMed ID: 27650983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing the Water Confined in Hydrogel Using Near-Infrared Spectroscopy.
    Ma B; Cai W; Shao X
    Appl Spectrosc; 2022 Jul; 76(7):773-782. PubMed ID: 35255722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband dielectric spectroscopy of glucose aqueous solution: Analysis of the hydration state and the hydrogen bond network.
    Shiraga K; Suzuki T; Kondo N; Tajima T; Nakamura M; Togo H; Hirata A; Ajito K; Ogawa Y
    J Chem Phys; 2015 Jun; 142(23):234504. PubMed ID: 26093565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural properties of hydration shell around various conformations of simple polypeptides.
    Czapiewski D; Zielkiewicz J
    J Phys Chem B; 2010 Apr; 114(13):4536-50. PubMed ID: 20232827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Precision Megahertz-to-Terahertz Dielectric Spectroscopy of Protein Collective Motions and Hydration Dynamics.
    Charkhesht A; Regmi CK; Mitchell-Koch KR; Cheng S; Vinh NQ
    J Phys Chem B; 2018 Jun; 122(24):6341-6350. PubMed ID: 29791154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A near-infrared analysis of water-macromolecule interactions:hydration and the spectra of aqueous solutions of intact proteins.
    Vandermeulen DL; Ressler N
    Arch Biochem Biophys; 1980 Jan; 199(1):197-205. PubMed ID: 6766705
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.