These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37477646)

  • 21. Hofmeister anionic effects on hydration electric fields around water and peptide.
    Kim H; Lee H; Lee G; Kim H; Cho M
    J Chem Phys; 2012 Mar; 136(12):124501. PubMed ID: 22462868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ion hydration and associated defects in hydrogen bond network of water: observation of reorientationally slow water molecules beyond first hydration shell in aqueous solutions of MgCl2.
    Baul U; Vemparala S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012114. PubMed ID: 25679577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydration and energy dissipation measurements of biomolecules on a piezoelectric quartz oscillator by admittance analyses.
    Ozeki T; Morita M; Yoshimine H; Furusawa H; Okahata Y
    Anal Chem; 2007 Jan; 79(1):79-88. PubMed ID: 17194124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of Embryonic Bioactivity through Changes in the Water Structure Using Near-Infrared Spectroscopy and Imaging.
    Ishigaki M; Yasui Y; Kajita M; Ozaki Y
    Anal Chem; 2020 Jun; 92(12):8133-8141. PubMed ID: 32407102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogen Bonding in Liquid Water and in the Hydration Shell of Salts.
    Dagade DH; Barge SS
    Chemphyschem; 2016 Mar; 17(6):902-12. PubMed ID: 26749515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction between tau and water during the induced aggregation revealed by near-infrared spectroscopy.
    Sun Y; Ma L; Cai W; Shao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118046. PubMed ID: 31954360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the function of water during the gelation of globular proteins by temperature-dependent near infrared spectroscopy.
    Ma L; Cui X; Cai W; Shao X
    Phys Chem Chem Phys; 2018 Aug; 20(30):20132-20140. PubMed ID: 30027956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural rearrangements in water viewed through two-dimensional infrared spectroscopy.
    Roberts ST; Ramasesha K; Tokmakoff A
    Acc Chem Res; 2009 Sep; 42(9):1239-49. PubMed ID: 19585982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insight into the stability of protein in confined environment through analyzing the structure of water by temperature-dependent near-infrared spectroscopy.
    Wang S; Wang M; Han L; Sun Y; Cai W; Shao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 2):120581. PubMed ID: 34776375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermostabilization mechanism of bovine serum albumin by trehalose.
    Hédoux A; Willart JF; Paccou L; Guinet Y; Affouard F; Lerbret A; Descamps M
    J Phys Chem B; 2009 Apr; 113(17):6119-26. PubMed ID: 19385694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Near-infrared spectral studies of hydrogen-bond in water-methanol mixtures].
    Yuan B; Dou XM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Nov; 24(11):1319-22. PubMed ID: 15762465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Circular hydrogen bond networks on the surface of beta-ribofuranose in aqueous solution.
    Suzuki T; Sota T
    J Phys Chem B; 2005 Jun; 109(25):12603-11. PubMed ID: 16852559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethanol in Aqueous Solution Studied by Microjet Photoelectron Spectroscopy and Theory.
    Ågren H; Björneholm O; Öhrwall G; Carravetta V; de Brito AN
    Acc Chem Res; 2022 Nov; 55(21):3080-3087. PubMed ID: 36251058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions.
    Park S; Odelius M; Gaffney KJ
    J Phys Chem B; 2009 Jun; 113(22):7825-35. PubMed ID: 19435307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water-protein interactions from high-resolution protein crystallography.
    Nakasako M
    Philos Trans R Soc Lond B Biol Sci; 2004 Aug; 359(1448):1191-204; discussion 1204-6. PubMed ID: 15306376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the intermolecular vibrational coupling, hydrogen bonding, and librational freedom of water in the hydration shell of mono- and bivalent anions.
    Ahmed M; Namboodiri V; Singh AK; Mondal JA
    J Chem Phys; 2014 Oct; 141(16):164708. PubMed ID: 25362333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydration in proteins observed by high-resolution neutron crystallography.
    Chatake T; Ostermann A; Kurihara K; Parak FG; Niimura N
    Proteins; 2003 Feb; 50(3):516-23. PubMed ID: 12557193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast Proton Conduction in Denatured Bovine Serum Albumin-Coated Nafion Membranes.
    Jia W; Wu P
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39768-39776. PubMed ID: 30387596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geometrical behavior of hydrogen bonding patterns in the alpha-dodecyl-omega-hydroxy-tris(oxyethylene)-water system monitored by near infrared spectroscopy.
    Ohno K; Takao H; Katsumoto Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Mar; 63(3):690-3. PubMed ID: 16024280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of protic ionic liquids on hydration of glycine based peptides.
    Patil KR; Barge SS; Bhosale BD; Dagade DH
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120378. PubMed ID: 34543989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.