These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37477712)

  • 21. The neural correlates of attention orienting in visuospatial working memory for detecting feature and conjunction changes.
    Yeh YY; Kuo BC; Liu HL
    Brain Res; 2007 Jan; 1130(1):146-57. PubMed ID: 17173876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sustained and transient neural modulations in prefrontal cortex related to declarative long-term memory, working memory, and attention.
    Marklund P; Fransson P; Cabeza R; Petersson KM; Ingvar M; Nyberg L
    Cortex; 2007 Jan; 43(1):22-37. PubMed ID: 17334205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A frontal attention mechanism in the visual mismatch negativity.
    Hedge C; Stothart G; Todd Jones J; Rojas Frías P; Magee KL; Brooks JC
    Behav Brain Res; 2015 Oct; 293():173-81. PubMed ID: 26183650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of multi-domain cognitive training on working memory retrieval in older adults: behavioral and ERP evidence from a Chinese community study.
    Hong X; Chen Y; Wang J; Shen Y; Li Q; Zhao B; Guo X; Feng W; Wu W; Li C
    Sci Rep; 2021 Jan; 11(1):1207. PubMed ID: 33441734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural basis of distractor resistance during visual working memory maintenance.
    Hermann P; Weiss B; Knakker B; Madurka P; Manga A; Nárai Á; Vidnyánszky Z
    Neuroimage; 2021 Dec; 245():118650. PubMed ID: 34687860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural correlates of working memory in children and adolescents with agenesis of the corpus callosum: An fMRI study.
    Siffredi V; Spencer-Smith MM; Barrouillet P; Vaessen MJ; Leventer RJ; Anderson V; Vuilleumier P
    Neuropsychologia; 2017 Nov; 106():71-82. PubMed ID: 28893526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Task-specific modulation of PFC activity for matching-rule governed decision-making.
    Parto Dezfouli M; Zarei M; Constantinidis C; Daliri MR
    Brain Struct Funct; 2021 Mar; 226(2):443-455. PubMed ID: 33398431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Holding Biological Motion in Working Memory: An fMRI Study.
    Lu X; Huang J; Yi Y; Shen M; Weng X; Gao Z
    Front Hum Neurosci; 2016; 10():251. PubMed ID: 27313520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The neural substrates associated with attentional resources and difficulty of concurrent processing of the two verbal tasks.
    Mizuno K; Tanaka M; Tanabe HC; Sadato N; Watanabe Y
    Neuropsychologia; 2012 Jul; 50(8):1998-2009. PubMed ID: 22571931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual working memory load disrupts the space-based attentional guidance of target selection.
    Berggren N; Eimer M
    Br J Psychol; 2019 May; 110(2):357-371. PubMed ID: 29943810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Competitive Influences of Perceptual Load and Working Memory Guidance on Selective Attention.
    Tan J; Zhao Y; Wang L; Tian X; Cui Y; Yang Q; Pan W; Zhao X; Chen A
    PLoS One; 2015; 10(6):e0129533. PubMed ID: 26098079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Semantic Bimodal Presentation Differentially Slows Working Memory Retrieval.
    Cheng J; Li J; Wang A; Zhang M
    Brain Sci; 2023 May; 13(5):. PubMed ID: 37239283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Working memory-driven attention towards a distractor does not interfere with target feature perception.
    Dowd EW; Nag S; Golomb JD
    Vis cogn; 2019; 27(9-10):714-731. PubMed ID: 33013176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phonological Working Memory Representations in the Left Inferior Parietal Lobe in the Face of Distraction and Neural Stimulation.
    Yue Q; Martin RC
    Front Hum Neurosci; 2022; 16():890483. PubMed ID: 35814962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The spatio-temporal dynamics of deviance and target detection in the passive and active auditory oddball paradigm: a sLORETA study.
    Justen C; Herbert C
    BMC Neurosci; 2018 Apr; 19(1):25. PubMed ID: 29673322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differences between target and non-target probe processing--combined evidence from fMRI, EEG and fMRI-constrained source analysis.
    Galashan D; Fehr T; Herrmann M
    Neuroimage; 2015 May; 111():289-99. PubMed ID: 25731996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remember the source: dissociating frontal and parietal contributions to episodic memory.
    Donaldson DI; Wheeler ME; Petersen SE
    J Cogn Neurosci; 2010 Feb; 22(2):377-91. PubMed ID: 19400677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impaired retrieval processes evident during visual working memory in schizophrenia.
    Lynn PA; Kang SS; Sponheim SR
    Schizophr Res Cogn; 2016 Sep; 5():47-55. PubMed ID: 28740817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unbalance between working memory task-activation and task-deactivation networks in epilepsy: Simultaneous EEG-fMRI study.
    Qin Y; Jiang S; Xiong S; Li S; Fu Q; Yang L; Du P; Luo C; Yao D
    J Neurosci Res; 2023 Jul; 101(7):1188-1199. PubMed ID: 36866516
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An event-related fMRI study of the neural networks underlying the encoding, maintenance, and retrieval phase in a delayed-match-to-sample task.
    Habeck C; Rakitin BC; Moeller J; Scarmeas N; Zarahn E; Brown T; Stern Y
    Brain Res Cogn Brain Res; 2005 May; 23(2-3):207-20. PubMed ID: 15820629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.