BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37477956)

  • 1. Blood-brain barrier lesion - a novel determinant of autonomic imbalance in heart failure and the effects of exercise training.
    Raquel HA; Pérego SM; Masson GS; Jensen L; Colquhoun A; Michelini LC
    Clin Sci (Lond); 2023 Aug; 137(15):1049-1066. PubMed ID: 37477956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trained hypertensive rats exhibit decreased transcellular vesicle trafficking, increased tight junctions' density, restored blood-brain barrier permeability and normalized autonomic control of the circulation.
    Candido VB; Perego SM; Ceroni A; Metzger M; Colquhoun A; Michelini LC
    Front Physiol; 2023; 14():1069485. PubMed ID: 36909225
    [No Abstract]   [Full Text] [Related]  

  • 3. Transcytosis within PVN capillaries: a mechanism determining both hypertension-induced blood-brain barrier dysfunction and exercise-induced correction.
    Fragas MG; Cândido VB; Davanzo GG; Rocha-Santos C; Ceroni A; Michelini LC
    Am J Physiol Regul Integr Comp Physiol; 2021 Nov; 321(5):R732-R741. PubMed ID: 34549626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypertension depresses but exercise training restores both Mfsd2a expression and blood-brain barrier function within PVN capillaries.
    Perego SM; Raquel HA; Candido VB; Masson GS; Martins MM; Ceroni A; Michelini LC
    Am J Physiol Regul Integr Comp Physiol; 2023 Sep; 325(3):R299-R307. PubMed ID: 37458379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise training preserves vagal preganglionic neurones and restores parasympathetic tonus in heart failure.
    Ichige MH; Santos CR; Jordão CP; Ceroni A; Negrão CE; Michelini LC
    J Physiol; 2016 Nov; 594(21):6241-6254. PubMed ID: 27444212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interleukin 17A Contributes to Blood-Brain Barrier Disruption of Hypothalamic Paraventricular Nucleus in Rats With Myocardial Infarction.
    Yu Y; Weiss RM; Wei SG
    J Am Heart Assoc; 2024 Feb; 13(3):e032533. PubMed ID: 38240234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maintenance of Blood-Brain Barrier Integrity in Hypertension: A Novel Benefit of Exercise Training for Autonomic Control.
    Buttler L; Jordão MT; Fragas MG; Ruggeri A; Ceroni A; Michelini LC
    Front Physiol; 2017; 8():1048. PubMed ID: 29311978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caveolin-1 accelerates hypoxia-induced endothelial dysfunction in high-altitude cerebral edema.
    Xue Y; Wang X; Wan B; Wang D; Li M; Cheng K; Luo Q; Wang D; Lu Y; Zhu L
    Cell Commun Signal; 2022 Oct; 20(1):160. PubMed ID: 36253854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood-brain barrier in a focal cerebral ischemic insult.
    Jiao H; Wang Z; Liu Y; Wang P; Xue Y
    J Mol Neurosci; 2011 Jun; 44(2):130-9. PubMed ID: 21318404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown.
    Nag S; Venugopalan R; Stewart DJ
    Acta Neuropathol; 2007 Nov; 114(5):459-69. PubMed ID: 17687559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mild hypothermia alleviates brain oedema and blood-brain barrier disruption by attenuating tight junction and adherens junction breakdown in a swine model of cardiopulmonary resuscitation.
    Li J; Li C; Yuan W; Wu J; Li J; Li Z; Zhao Y
    PLoS One; 2017; 12(3):e0174596. PubMed ID: 28355299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanol-induced activation of myosin light chain kinase leads to dysfunction of tight junctions and blood-brain barrier compromise.
    Haorah J; Heilman D; Knipe B; Chrastil J; Leibhart J; Ghorpade A; Miller DW; Persidsky Y
    Alcohol Clin Exp Res; 2005 Jun; 29(6):999-1009. PubMed ID: 15976526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-27a-3p regulates expression of intercellular junctions at the brain endothelium and controls the endothelial barrier permeability.
    Harati R; Hammad S; Tlili A; Mahfood M; Mabondzo A; Hamoudi R
    PLoS One; 2022; 17(1):e0262152. PubMed ID: 35025943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of erythropoietin on blood-brain barrier tight junctions in ischemia-reperfusion rats.
    Liu K; Sun T; Wang P; Liu YH; Zhang LW; Xue YX
    J Mol Neurosci; 2013 Feb; 49(2):369-79. PubMed ID: 23001813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Burns Impair Blood-Brain Barrier and Mesenchymal Stem Cells Can Reverse the Process in Mice.
    Yang J; Ma K; Zhang C; Liu Y; Liang F; Hu W; Bian X; Yang S; Fu X
    Front Immunol; 2020; 11():578879. PubMed ID: 33240266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Claudin-5a is essential for the functional formation of both zebrafish blood-brain barrier and blood-cerebrospinal fluid barrier.
    Li Y; Wang C; Zhang L; Chen B; Mo Y; Zhang J
    Fluids Barriers CNS; 2022 Jun; 19(1):40. PubMed ID: 35658877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mfsd2a (Major Facilitator Superfamily Domain Containing 2a) Attenuates Intracerebral Hemorrhage-Induced Blood-Brain Barrier Disruption by Inhibiting Vesicular Transcytosis.
    Yang YR; Xiong XY; Liu J; Wu LR; Zhong Q; Zhou K; Meng ZY; Liu L; Wang FX; Gong QW; Liao MF; Duan CM; Li J; Yang MH; Zhang Q; Gong CX; Yang QW
    J Am Heart Assoc; 2017 Jul; 6(7):. PubMed ID: 28724654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible opening of the blood-brain barrier by claudin-5-binding variants of Clostridium perfringens enterotoxin's claudin-binding domain.
    Neuhaus W; Piontek A; Protze J; Eichner M; Mahringer A; Subileau EA; Lee IM; Schulzke JD; Krause G; Piontek J
    Biomaterials; 2018 Apr; 161():129-143. PubMed ID: 29421550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tight junction proteins at the blood-brain barrier: far more than claudin-5.
    Berndt P; Winkler L; Cording J; Breitkreuz-Korff O; Rex A; Dithmer S; Rausch V; Blasig R; Richter M; Sporbert A; Wolburg H; Blasig IE; Haseloff RF
    Cell Mol Life Sci; 2019 May; 76(10):1987-2002. PubMed ID: 30734065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of extracellular vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating Caveolin-1-dependent ZO-1 and Claudin-5 endocytosis in acute ischemic stroke.
    Li Y; Liu B; Zhao T; Quan X; Han Y; Cheng Y; Chen Y; Shen X; Zheng Y; Zhao Y
    J Nanobiotechnology; 2023 Feb; 21(1):70. PubMed ID: 36855156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.