These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 37478040)
1. Exoskeleton-Assisted Sit-to-Stand Training Improves Lower-Limb Function Through Modifications of Muscle Synergies in Subacute Stroke Survivors. Li YA; Chen ZJ; He C; Wei XP; Xia N; Gu MH; Xiong CH; Zhang Q; Kesar TM; Huang XL; Xu J IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3095-3105. PubMed ID: 37478040 [TBL] [Abstract][Full Text] [Related]
2. Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Zhu F; Kern M; Fowkes E; Afzal T; Contreras-Vidal JL; Francisco GE; Chang SH J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 33752175 [No Abstract] [Full Text] [Related]
3. Adapting to the Mechanical Properties and Active Force of an Exoskeleton by Altering Muscle Synergies in Chronic Stroke Survivors. Rinaldi L; Yeung LF; Lam PC; Pang MYC; Tong RK; Cheung VCK IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2203-2213. PubMed ID: 32804652 [TBL] [Abstract][Full Text] [Related]
4. Merged swing-muscle synergies and their relation to walking characteristics in subacute post-stroke patients: An observational study. Mizuta N; Hasui N; Nishi Y; Higa Y; Matsunaga A; Deguchi J; Yamamoto Y; Nakatani T; Taguchi J; Morioka S PLoS One; 2022; 17(2):e0263613. PubMed ID: 35120178 [TBL] [Abstract][Full Text] [Related]
5. Changes in leg cycling muscle synergies after training augmented by functional electrical stimulation in subacute stroke survivors: a pilot study. Ambrosini E; Parati M; Peri E; De Marchis C; Nava C; Pedrocchi A; Ferriero G; Ferrante S J Neuroeng Rehabil; 2020 Feb; 17(1):35. PubMed ID: 32106874 [TBL] [Abstract][Full Text] [Related]
6. Clarify Sit-to-Stand Muscle Synergy and Tension Changes in Subacute Stroke Rehabilitation by Musculoskeletal Modeling. Wang R; An Q; Yang N; Kogami H; Yoshida K; Yamakawa H; Hamada H; Shimoda S; Yamasaki HR; Yokoyama M; Alnajjar F; Hattori N; Takahashi K; Fujii T; Otomune H; Miyai I; Yamashita A; Asama H Front Syst Neurosci; 2022; 16():785143. PubMed ID: 35359620 [TBL] [Abstract][Full Text] [Related]
7. Muscle synergy analysis yields an efficient and physiologically relevant method of assessing stroke. Funato T; Hattori N; Yozu A; An Q; Oya T; Shirafuji S; Jino A; Miura K; Martino G; Berger D; Miyai I; Ota J; Ivanenko Y; d'Avella A; Seki K Brain Commun; 2022; 4(4):fcac200. PubMed ID: 35974798 [TBL] [Abstract][Full Text] [Related]
8. Analysis of muscle synergy and gait kinematics during regain of gait function through rehabilitation in a monoplegic patient. Ebihara A; Hirota M; Kumakura Y; Nagaoka M Front Hum Neurosci; 2023; 17():1287675. PubMed ID: 38264349 [TBL] [Abstract][Full Text] [Related]
9. Effects of early and intensive neuro-rehabilitative treatment on muscle synergies in acute post-stroke patients: a pilot study. Tropea P; Monaco V; Coscia M; Posteraro F; Micera S J Neuroeng Rehabil; 2013 Oct; 10():103. PubMed ID: 24093623 [TBL] [Abstract][Full Text] [Related]
10. Functional synergy recruitment index as a reliable biomarker of motor function and recovery in chronic stroke patients. Irastorza-Landa N; García-Cossio E; Sarasola-Sanz A; Brötz D; Birbaumer N; Ramos-Murguialday A J Neural Eng; 2021 May; 18(4):. PubMed ID: 33530072 [No Abstract] [Full Text] [Related]
11. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. Proietti T; Guigon E; Roby-Brami A; Jarrassé N J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179 [TBL] [Abstract][Full Text] [Related]
12. Compensation or Recovery? Altered Kinetics and Neuromuscular Synergies Following High-Intensity Stepping Training Poststroke. Ardestani MM; Kinnaird CR; Henderson CE; Hornby TG Neurorehabil Neural Repair; 2019 Jan; 33(1):47-58. PubMed ID: 30595090 [TBL] [Abstract][Full Text] [Related]
13. Task-specific training for improving propulsion symmetry and gait speed in people in the chronic phase after stroke: a proof-of-concept study. Alingh JF; Groen BE; Kamphuis JF; Geurts ACH; Weerdesteyn V J Neuroeng Rehabil; 2021 Apr; 18(1):69. PubMed ID: 33892754 [TBL] [Abstract][Full Text] [Related]
14. A unilateral robotic knee exoskeleton to assess the role of natural gait assistance in hemiparetic patients. Lora-Millan JS; Sanchez-Cuesta FJ; Romero JP; Moreno JC; Rocon E J Neuroeng Rehabil; 2022 Oct; 19(1):109. PubMed ID: 36209096 [TBL] [Abstract][Full Text] [Related]
15. Effects of Home-Based Robotic Therapy Involving the Single-Joint Hybrid Assistive Limb Robotic Suit in the Chronic Phase of Stroke: A Pilot Study. Hyakutake K; Morishita T; Saita K; Fukuda H; Shiota E; Higaki Y; Inoue T; Uehara Y Biomed Res Int; 2019; 2019():5462694. PubMed ID: 31011576 [TBL] [Abstract][Full Text] [Related]
16. Knee Exoskeleton Reduces Muscle Effort and Improves Balance During Sit-to-Stand Transitions After Stroke: A Case Study. Sarkisian SV; Gunnell AJ; Bo Foreman K; Lenzi T IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176078 [TBL] [Abstract][Full Text] [Related]
17. Electromyographical characteristics and muscle utilization in hemiplegic patients during sit-to-stand activity: an observational study. Lu RR; Li F; Zhu B Eur J Phys Rehabil Med; 2016 Apr; 52(2):186-94. PubMed ID: 26334363 [TBL] [Abstract][Full Text] [Related]
18. Alterations in intermuscular coordination underlying isokinetic exercise after a stroke and their implications on neurorehabilitation. Park JH; Shin JH; Lee H; Roh J; Park HS J Neuroeng Rehabil; 2021 Jul; 18(1):110. PubMed ID: 34217328 [TBL] [Abstract][Full Text] [Related]
19. Lower limb muscle activation during the sit-to-stand task in subjects who have had a stroke. Prudente C; Rodrigues-de-Paula F; Faria CD Am J Phys Med Rehabil; 2013 Aug; 92(8):666-75. PubMed ID: 23370586 [TBL] [Abstract][Full Text] [Related]