BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 37478159)

  • 1. Interaction of Iron Oxide Nanoparticles with Macrophages Is Influenced Distinctly by "Self" and "Non-Self" Biological Identities.
    Portilla Y; Mulens-Arias V; Daviu N; Paradela A; Pérez-Yagüe S; Barber DF
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):35906-35926. PubMed ID: 37478159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing iron-oxide nanoparticles towards the improved bactericidal activity of macrophage against Staphylococcus aureus.
    Yu B; Wang Z; Almutairi L; Huang S; Kim MH
    Nanomedicine; 2020 Feb; 24():102158. PubMed ID: 31982615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Choose your cell model wisely: The in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling.
    Joris F; Valdepérez D; Pelaz B; Wang T; Doak SH; Manshian BB; Soenen SJ; Parak WJ; De Smedt SC; Raemdonck K
    Acta Biomater; 2017 Jun; 55():204-213. PubMed ID: 28373085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron oxide nanoparticles cause surface coating- and core chemistry-dependent endothelial cell ferroptosis.
    Zhang X; Kong F; Wang T; Huang X; Li W; Zhang M; Wen T; Liu J; Zhang Y; Meng J; Xu H
    Nanotoxicology; 2022; 16(9-10):829-843. PubMed ID: 36660964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DMSA-coated IONPs trigger oxidative stress, mitochondrial metabolic reprograming and changes in mitochondrial disposition, hindering cell cycle progression of cancer cells.
    Daviu N; Portilla Y; Gómez de Cedrón M; Ramírez de Molina A; Barber DF
    Biomaterials; 2024 Jan; 304():122409. PubMed ID: 38052135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of iron oxide nanoparticles by cultured primary neurons.
    Petters C; Dringen R
    Neurochem Int; 2015 Feb; 81():1-9. PubMed ID: 25510641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Intrinsic Biological Identities of Iron Oxide Nanoparticles and Their Coatings: Unexplored Territory for Combinatorial Therapies.
    Mulens-Arias V; Rojas JM; Barber DF
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32349362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant Iron Oxide Nanoparticles: Their Biocompatibility and Bioactive Properties.
    Lee J; Lee JH; Lee SY; Park SA; Kim JH; Hwang D; Kim KA; Kim HS
    Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the toxic effects induced by iron oxide nanoparticles on neuroblastoma cell line: an integrative study combining cytotoxic, genotoxic and proteomic tools.
    Askri D; Cunin V; Béal D; Berthier S; Chovelon B; Arnaud J; Rachidi W; Sakly M; Amara S; Sève M; Lehmann SG
    Nanotoxicology; 2019 Oct; 13(8):1021-1040. PubMed ID: 31132913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron oxide and iron oxyhydroxide nanoparticles impair SARS-CoV-2 infection of cultured cells.
    DeDiego ML; Portilla Y; Daviu N; López-García D; Villamayor L; Mulens-Arias V; Ovejero JG; Gallo-Cordova Á; Veintemillas-Verdaguer S; Morales MP; Barber DF
    J Nanobiotechnology; 2022 Jul; 20(1):352. PubMed ID: 35907835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mushroom Carboxymethylated β-d-Glucan Functions as a Macrophage-Targeting Carrier for Iron Oxide Nanoparticles and an Inducer of Proinflammatory Macrophage Polarization for Immunotherapy.
    Su Y; Yang F; Chen L; Cheung PCK
    J Agric Food Chem; 2022 Jun; 70(23):7110-7121. PubMed ID: 35652418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer immunotherapeutic effect of carboxymethylated β-d-glucan coupled with iron oxide nanoparticles via reprogramming tumor-associated macrophages.
    Su Y; Yang F; Wang M; Cheung PCK
    Int J Biol Macromol; 2023 Feb; 228():692-705. PubMed ID: 36566807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways.
    Kim E; Kim JM; Kim L; Choi SJ; Park IS; Han JY; Chu YC; Choi ES; Na K; Hong SS
    Int J Nanomedicine; 2016; 11():4595-4607. PubMed ID: 27695320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity and biodistribution assessment of curcumin-coated iron oxide nanoparticles: Multidose administration.
    Aboushoushah S; Alshammari W; Darwesh R; Elbaily N
    Life Sci; 2021 Jul; 277():119625. PubMed ID: 34015288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted Imaging of CD206 Expressing Tumor-Associated M2-like Macrophages Using Mannose-Conjugated Antibiofouling Magnetic Iron Oxide Nanoparticles.
    Li Y; Wu H; Ji B; Qian W; Xia S; Wang L; Xu Y; Chen J; Yang L; Mao H
    ACS Appl Bio Mater; 2020 Jul; 3(7):4335-4347. PubMed ID: 34841220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron oxide nanoparticles size-dependently activate mouse primary macrophages via oxidative stress and endoplasmic reticulum stress.
    Ying H; Ruan Y; Zeng Z; Bai Y; Xu J; Chen S
    Int Immunopharmacol; 2022 Apr; 105():108533. PubMed ID: 35063754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of Iron Oxide-Induced Macrophage Activation: The Impact of Composition and the Underlying Signaling Pathway.
    Gu Z; Liu T; Tang J; Yang Y; Song H; Tuong ZK; Fu J; Yu C
    J Am Chem Soc; 2019 Apr; 141(15):6122-6126. PubMed ID: 30933483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double-receptor-targeting multifunctional iron oxide nanoparticles drug delivery system for the treatment and imaging of prostate cancer.
    Ahmed MSU; Salam AB; Yates C; Willian K; Jaynes J; Turner T; Abdalla MO
    Int J Nanomedicine; 2017; 12():6973-6984. PubMed ID: 29033565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses.
    Luo C; Li Y; Yang L; Wang X; Long J; Liu J
    Arch Toxicol; 2015 Mar; 89(3):357-69. PubMed ID: 24847785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Use of Iron Oxide Nanoparticles to Reprogram Macrophage Responses and the Immunological Tumor Microenvironment.
    Mulens-Arias V; Rojas JM; Barber DF
    Front Immunol; 2021; 12():693709. PubMed ID: 34177955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.