BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37478372)

  • 1. HMMPolish: a coding region polishing tool for TGS-sequenced RNA viruses.
    Yu R; Abdullah SMU; Sun Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37478372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AccuVIR: an ACCUrate VIRal genome assembly tool for third-generation sequencing data.
    Yu R; Cai D; Sun Y
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NextPolish2: A Repeat-aware Polishing Tool for Genomes Assembled Using HiFi Long Reads.
    Hu J; Wang Z; Liang F; Liu SL; Ye K; Wang DP
    Genomics Proteomics Bioinformatics; 2024 May; 22(1):. PubMed ID: 38862426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking of long-read sequencing, assemblers and polishers for yeast genome.
    Zhang X; Liu CG; Yang SH; Wang X; Bai FW; Wang Z
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35511110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads.
    Xu M; Guo L; Gu S; Wang O; Zhang R; Peters BA; Fan G; Liu X; Xu X; Deng L; Zhang Y
    Gigascience; 2020 Sep; 9(9):. PubMed ID: 32893860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads to improve genomic analyses.
    Chen Z; Erickson DL; Meng J
    Genomics; 2021 May; 113(3):1366-1377. PubMed ID: 33716184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of ONT and CCS sequencing technologies on the polyploid genome of a medicinal plant showed that high error rate of ONT reads are not suitable for self-correction.
    Zeng P; Tian Z; Han Y; Zhang W; Zhou T; Peng Y; Hu H; Cai J
    Chin Med; 2022 Aug; 17(1):94. PubMed ID: 35945546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polypolish: Short-read polishing of long-read bacterial genome assemblies.
    Wick RR; Holt KE
    PLoS Comput Biol; 2022 Jan; 18(1):e1009802. PubMed ID: 35073327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BlockPolish: accurate polishing of long-read assembly via block divide-and-conquer.
    Huang N; Nie F; Ni P; Gao X; Luo F; Wang J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34619757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. JASPER: A fast genome polishing tool that improves accuracy of genome assemblies.
    Guo A; Salzberg SL; Zimin AV
    PLoS Comput Biol; 2023 Mar; 19(3):e1011032. PubMed ID: 37000853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apollo: a sequencing-technology-independent, scalable and accurate assembly polishing algorithm.
    Firtina C; Kim JS; Alser M; Senol Cali D; Cicek AE; Alkan C; Mutlu O
    Bioinformatics; 2020 Jun; 36(12):3669-3679. PubMed ID: 32167530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How low can you go? Short-read polishing of Oxford Nanopore bacterial genome assemblies.
    Bouras G; Judd LM; Edwards RA; Vreugde S; Stinear TP; Wick RR
    Microb Genom; 2024 Jun; 10(6):. PubMed ID: 38833287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarking multi-platform sequencing technologies for human genome assembly.
    Wang J; Veldsman WP; Fang X; Huang Y; Xie X; Lyu A; Zhang L
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37594299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of De Novo Assembly Strategies for Bacterial Genomes.
    Zhang P; Jiang D; Wang Y; Yao X; Luo Y; Yang Z
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ntEdit+Sealer: Efficient Targeted Error Resolution and Automated Finishing of Long-Read Genome Assemblies.
    Li JX; Coombe L; Wong J; Birol I; Warren RL
    Curr Protoc; 2022 May; 2(5):e442. PubMed ID: 35567771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HaploDMF: viral haplotype reconstruction from long reads via deep matrix factorization.
    Cai D; Shang J; Sun Y
    Bioinformatics; 2022 Dec; 38(24):5360-5367. PubMed ID: 36308467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the Resilience of Machine Learning Classification Algorithms on SARS-CoV-2 Genome Sequences Generated with Long-Read Specific Errors.
    Sahoo B; Ali S; Chen PY; Patterson M; Zelikovsky A
    Biomolecules; 2023 Jun; 13(6):. PubMed ID: 37371514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LRCstats, a tool for evaluating long reads correction methods.
    La S; Haghshenas E; Chauve C
    Bioinformatics; 2017 Nov; 33(22):3652-3654. PubMed ID: 29036421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly of chloroplast genomes with long- and short-read data: a comparison of approaches using Eucalyptus pauciflora as a test case.
    Wang W; Schalamun M; Morales-Suarez A; Kainer D; Schwessinger B; Lanfear R
    BMC Genomics; 2018 Dec; 19(1):977. PubMed ID: 30594129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of third-generation sequencing approaches to identify viral pathogens under public health emergency conditions.
    Li Y; He XZ; Li MH; Li B; Yang MJ; Xie Y; Zhang Y; Ma XJ
    Virus Genes; 2020 Jun; 56(3):288-297. PubMed ID: 32193781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.