BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 374784)

  • 1. [Cotransport of sodium and organic acid].
    Marumo F
    Nihon Rinsho; 1979; 37(2):274-7. PubMed ID: 374784
    [No Abstract]   [Full Text] [Related]  

  • 2. [Cotransport of sodium, sugar and amino acids].
    Hoshi T
    Nihon Rinsho; 1979; 37(2):268-73. PubMed ID: 374783
    [No Abstract]   [Full Text] [Related]  

  • 3. Sugar, amino acid, and Na+ cotransport in the proximal tubule.
    Ullrich KJ
    Annu Rev Physiol; 1979; 41():181-95. PubMed ID: 373588
    [No Abstract]   [Full Text] [Related]  

  • 4. [Cotransport of sodium, HC03- and H+].
    Fujimoto M; Kotera K; Matsumura Y; Satake N; Honda M; Kajino K; Naito K; Kubota T
    Nihon Rinsho; 1979; 37(2):261-7. PubMed ID: 374782
    [No Abstract]   [Full Text] [Related]  

  • 5. The Feldberg Lecture 1976. Solute transport across epithelia: what can we learn from micropuncture studies in kidney tubules?
    Frömter E
    J Physiol; 1979 Mar; 288():1-31. PubMed ID: 381634
    [No Abstract]   [Full Text] [Related]  

  • 6. Transport of metabolic substrates by the proximal nephron.
    Schafer JA; Williams JC
    Annu Rev Physiol; 1985; 47():103-25. PubMed ID: 2581501
    [No Abstract]   [Full Text] [Related]  

  • 7. [Proceedings: Ion permeability and electric resistance of the proximal kidney tubules of newts].
    Maruyama T; Katsuragi T; Suzuki Y
    Nihon Seirigaku Zasshi; 1974 Sep; 36(8-9):353. PubMed ID: 4478492
    [No Abstract]   [Full Text] [Related]  

  • 8. Ion transport across renal proximal tubule: analysis of luminal, contraluminal and paracellular transport steps.
    Frömter E
    Fortschr Zool; 1975; 23(2-3):248-60. PubMed ID: 1213645
    [No Abstract]   [Full Text] [Related]  

  • 9. [Cellular physiology in transport functions of the renal tubules--mechanism of active biological transport of organic solutes].
    Hoshi T
    Nihon Jinzo Gakkai Shi; 1975 Apr; 17(4):218-29. PubMed ID: 1239598
    [No Abstract]   [Full Text] [Related]  

  • 10. Transtubular transport of D-glucose and organic acids in the "in vitro" blood perfused rabbit kidney.
    Milla E
    Boll Soc Ital Biol Sper; 1984 May; 60 Suppl 4():175-81. PubMed ID: 6466484
    [No Abstract]   [Full Text] [Related]  

  • 11. Sodium cotransport processes in renal epithelial cell lines.
    Rabito CA
    Miner Electrolyte Metab; 1986; 12(1):32-41. PubMed ID: 2421146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal tubular transport mechanisms of amino acids.
    Samarzija I; Molnar V; Frömter E
    Przegl Lek; 1985; 42(4):439-41. PubMed ID: 4048537
    [No Abstract]   [Full Text] [Related]  

  • 13. [Proximal isosmotic reabsorption by the kidney. Mechanism and regulation].
    Morel F
    J Physiol (Paris); 1976; 72(4):515-30. PubMed ID: 134149
    [No Abstract]   [Full Text] [Related]  

  • 14. [Membrane function of the kidney].
    Kinne R
    Bull Schweiz Akad Med Wiss; 1976 Dec; 32(4-6):251-76. PubMed ID: 137758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disorders of renal amino acid transport.
    Segal S
    N Engl J Med; 1976 May; 294(19):1044-51. PubMed ID: 943698
    [No Abstract]   [Full Text] [Related]  

  • 16. [Cotransport of sodium and C1-].
    Imai M
    Nihon Rinsho; 1979; 37(2):246-54. PubMed ID: 374781
    [No Abstract]   [Full Text] [Related]  

  • 17. PTH-induced amino acid transport in membrane vesicle preparations from rabbit kidney proximal convoluted tubule.
    Bidot-Lopez P; Schinbeckler B; O'Malley BC
    Physiol Chem Phys; 1982; 14(2):169-76. PubMed ID: 7184038
    [No Abstract]   [Full Text] [Related]  

  • 18. Ion activity measurements in single renal tubules.
    Giebisch G; Cemerikic D; Oberleithner H; Guggino W; Biagi B
    Soc Gen Physiol Ser; 1981; 36():163-79. PubMed ID: 6269226
    [No Abstract]   [Full Text] [Related]  

  • 19. Characteristics of salt and water transport in superficial and juxtamedullary straight segments of proximal tubules.
    Kawamura S; Imai M; Seldin DW; Kukko JP
    J Clin Invest; 1975 Jun; 55(6):1269-77. PubMed ID: 1133172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of renal denervation on free flow proximal tubular potential difference in the rat.
    Szénási G; Kottra G; Bencsáth P; Takács L
    Acta Physiol Acad Sci Hung; 1981; 57(2):131-5. PubMed ID: 7315375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.