These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37478430)

  • 1. Loss Difference Induced Localization in a Non-Hermitian Honeycomb Photonic Lattice.
    Feng Y; Liu Z; Liu F; Yu J; Liang S; Li F; Zhang Y; Xiao M; Zhang Z
    Phys Rev Lett; 2023 Jul; 131(1):013802. PubMed ID: 37478430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically-Induced Symmetry Switching in a Reconfigurable Kagome Photonic Lattice: From Flatband to Type-III Dirac Cones.
    Yu Q; Liu Z; Guo D; Liang S; Zhang Y; Zhang Z
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36145009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices.
    Hahn C; Choi Y; Yoon JW; Song SH; Oh CH; Berini P
    Nat Commun; 2016 Jul; 7():12201. PubMed ID: 27425577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental realization of a reconfigurable Lieb photonic lattice in a coherent atomic medium.
    Liang S; Liu Z; Ning S; Zhang Y; Zhang Z
    Opt Lett; 2023 Feb; 48(3):803-806. PubMed ID: 36723593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrete dynamics of light in an anti-parity-time symmetric photonic lattice in atomic vapors.
    Yu Q; Yuan J; Liu Z; He R; Liang S; Zhang Y; Zhang Z
    Opt Lett; 2023 Nov; 48(21):5735-5738. PubMed ID: 37910746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconfigurable chiral exceptional point and tunable non-reciprocity in a non-Hermitian system with phase-change material.
    Chen C; Dong D; Zhao L; Liu Y; Hu X; Li X; Fu Y
    Opt Express; 2022 Jul; 30(15):27812-27824. PubMed ID: 36236943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of energy band and its impact on the light transmission in a non-reciprocal Hermitian hourglass lattice.
    Yang J; Wang Y; Lin Y; Zhang W; Xin G; Qi X
    Opt Lett; 2024 Jan; 49(2):266-269. PubMed ID: 38194544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaginary coupling induced Dirac points and group velocity control in the non-reciprocal Hermitian lattice.
    Wang Y; Yang J; Dang Y; Wang H; Xin G; Qi X
    Opt Lett; 2022 Oct; 47(20):5437-5440. PubMed ID: 36240383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherent control on the generation and annihilation of a pseudospin-induced optical vortex in a honeycomb photonic lattice.
    Huang Y; Yu Q; Liu Z; Feng Y; Yu J; Zhong H; Zhang Y; Zhang Z
    Opt Lett; 2024 Jul; 49(13):3753-3756. PubMed ID: 38950259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Z
    Zhu XY; Gupta SK; Sun XC; He C; Li GX; Jiang JH; Liu XP; Lu MH; Chen YF
    Opt Express; 2018 Sep; 26(19):24307-24317. PubMed ID: 30469552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective enhancement of the non-Hermitian corner skin effect in reciprocal photonic crystals.
    Wang X; Hao R; Fan P; Hu L; Ye B; Zou Y; Jin S
    Opt Lett; 2024 Feb; 49(3):554-557. PubMed ID: 38300057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Observation of Aharonov-Bohm Cages in Photonic Lattices.
    Mukherjee S; Di Liberto M; Öhberg P; Thomson RR; Goldman N
    Phys Rev Lett; 2018 Aug; 121(7):075502. PubMed ID: 30169066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct observation of photonic Landau levels and helical edge states in strained honeycomb lattices.
    Jamadi O; Rozas E; Salerno G; Milićević M; Ozawa T; Sagnes I; Lemaître A; Le Gratiet L; Harouri A; Carusotto I; Bloch J; Amo A
    Light Sci Appl; 2020; 9():144. PubMed ID: 32864119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic zero mode in a non-Hermitian photonic lattice.
    Pan M; Zhao H; Miao P; Longhi S; Feng L
    Nat Commun; 2018 Apr; 9(1):1308. PubMed ID: 29615630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust light transport in non-Hermitian photonic lattices.
    Longhi S; Gatti D; Della Valle G
    Sci Rep; 2015 Aug; 5():13376. PubMed ID: 26314932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light scattering in disordered honeycomb photonic lattices near the Dirac points.
    Kartashov YV; Zeuner JM; Szameit A; Vysloukh VA; Torner L
    Opt Lett; 2013 Oct; 38(19):3727-30. PubMed ID: 24081037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PT-symmetric phase in kagome-based photonic lattices.
    Chern GW; Saxena A
    Opt Lett; 2015 Dec; 40(24):5806-9. PubMed ID: 26670517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p Orbital Flat Band and Dirac Cone in the Electronic Honeycomb Lattice.
    Gardenier TS; van den Broeke JJ; Moes JR; Swart I; Delerue C; Slot MR; Smith CM; Vanmaekelbergh D
    ACS Nano; 2020 Oct; 14(10):13638-13644. PubMed ID: 32991147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-diffracting states at exceptional points.
    Yuce C; Ramezani H
    Opt Lett; 2021 Feb; 46(4):765-768. PubMed ID: 33577509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilized Dirac points in one-dimensional non-Hermitian optical lattices.
    Li S; Ke S; Wang B; Lu P
    Opt Lett; 2022 Sep; 47(18):4732-4735. PubMed ID: 36107074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.