These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 37478541)

  • 1. Rapid phosphorylation of glucose-6-phosphate dehydrogenase by casein kinase 2 sustains redox homeostasis under ionizing radiation.
    Hao Y; Ren T; Huang X; Li M; Lee JH; Chen Q; Liu R; Tang Q
    Redox Biol; 2023 Sep; 65():102810. PubMed ID: 37478541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-6-phosphate dehydrogenase and the oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing radiation.
    Tuttle S; Stamato T; Perez ML; Biaglow J
    Radiat Res; 2000 Jun; 153(6):781-7. PubMed ID: 10825753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress.
    Filosa S; Fico A; Paglialunga F; Balestrieri M; Crooke A; Verde P; Abrescia P; Bautista JM; Martini G
    Biochem J; 2003 Mar; 370(Pt 3):935-43. PubMed ID: 12466018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose-6-phosphate dehydrogenase maintains redox homeostasis and biosynthesis in LKB1-deficient KRAS-driven lung cancer.
    Lan T; Arastu S; Lam J; Kim H; Wang W; Wang S; Bhatt V; Lopes EC; Hu Z; Sun M; Luo X; Ghergurovich JM; Su X; Rabinowitz JD; White E; Guo JY
    Nat Commun; 2024 Jul; 15(1):5857. PubMed ID: 38997257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD, NADPH/NADP
    Mejía SÁ; Gutman LAB; Camarillo CO; Navarro RM; Becerra MCS; Santana LD; Cruz M; Pérez EH; Flores MD
    Eur J Pharmacol; 2018 Jan; 818():499-507. PubMed ID: 29069580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer.
    Yang HC; Wu YH; Yen WC; Liu HY; Hwang TL; Stern A; Chiu DT
    Cells; 2019 Sep; 8(9):. PubMed ID: 31500396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G6PD plays a neuroprotective role in brain ischemia through promoting pentose phosphate pathway.
    Cao L; Zhang D; Chen J; Qin YY; Sheng R; Feng X; Chen Z; Ding Y; Li M; Qin ZH
    Free Radic Biol Med; 2017 Nov; 112():433-444. PubMed ID: 28823591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TRAF6-Mediated SM22α K21 Ubiquitination Promotes G6PD Activation and NADPH Production, Contributing to GSH Homeostasis and VSMC Survival In Vitro and In Vivo.
    Dong LH; Li L; Song Y; Duan ZL; Sun SG; Lin YL; Miao SB; Yin YJ; Shu YN; Li H; Chen P; Zhao LL; Han M
    Circ Res; 2015 Sep; 117(8):684-94. PubMed ID: 26291555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver.
    Frederiks WM; Vizan P; Bosch KS; Vreeling-Sindelárová H; Boren J; Cascante M
    Int J Exp Pathol; 2008 Aug; 89(4):232-40. PubMed ID: 18422600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells.
    Aurora AB; Khivansara V; Leach A; Gill JG; Martin-Sandoval M; Yang C; Kasitinon SY; Bezwada D; Tasdogan A; Gu W; Mathews TP; Zhao Z; DeBerardinis RJ; Morrison SJ
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35110412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose-6-phosphate dehydrogenase exerts antistress effects independently of its enzymatic activity.
    Jin X; Li X; Li L; Zhong B; Hong Y; Niu J; Li B
    J Biol Chem; 2022 Dec; 298(12):102587. PubMed ID: 36243112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress.
    Wang YP; Zhou LS; Zhao YZ; Wang SW; Chen LL; Liu LX; Ling ZQ; Hu FJ; Sun YP; Zhang JY; Yang C; Yang Y; Xiong Y; Guan KL; Ye D
    EMBO J; 2014 Jun; 33(12):1304-20. PubMed ID: 24769394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose-6-phosphate dehydrogenase--from oxidative stress to cellular functions and degenerative diseases.
    Ho HY; Cheng ML; Chiu DT
    Redox Rep; 2007; 12(3):109-18. PubMed ID: 17623517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt-Inducible Kinase 3 Provides Sugar Tolerance by Regulating NADPH/NADP
    Teesalu M; Rovenko BM; Hietakangas V
    Curr Biol; 2017 Feb; 27(3):458-464. PubMed ID: 28132818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nicotinamide, a glucose-6-phosphate dehydrogenase non-competitive mixed inhibitor, modifies redox balance and lipid accumulation in 3T3-L1 cells.
    Torres-Ramírez N; Baiza-Gutman LA; García-Macedo R; Ortega-Camarillo C; Contreras-Ramos A; Medina-Navarro R; Cruz M; Ibáñez-Hernández MÁ; Díaz-Flores M
    Life Sci; 2013 Dec; 93(25-26):975-85. PubMed ID: 24184296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G6PD-mediated increase in de novo NADP
    Zhang Y; Xu Y; Lu W; Li J; Yu S; Brown EJ; Stanger BZ; Rabinowitz JD; Yang X
    Sci Adv; 2022 Jul; 8(29):eabo0404. PubMed ID: 35857842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of Small-Molecule Activators for Glucose-6-Phosphate Dehydrogenase (G6PD) Using Machine Learning Approaches.
    Saddala MS; Lennikov A; Huang H
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32102234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of global metabolic responses of glucose-6-phosphate dehydrogenase-deficient hepatoma cells to diamide-induced oxidative stress.
    Ho HY; Cheng ML; Shiao MS; Chiu DT
    Free Radic Biol Med; 2013 Jan; 54():71-84. PubMed ID: 23142419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estradiol promotes pentose phosphate pathway addiction and cell survival via reactivation of Akt in mTORC1 hyperactive cells.
    Sun Y; Gu X; Zhang E; Park MA; Pereira AM; Wang S; Morrison T; Li C; Blenis J; Gerbaudo VH; Henske EP; Yu JJ
    Cell Death Dis; 2014 May; 5(5):e1231. PubMed ID: 24832603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism.
    Chen L; Zhang Z; Hoshino A; Zheng HD; Morley M; Arany Z; Rabinowitz JD
    Nat Metab; 2019 Mar; 1():404-415. PubMed ID: 31058257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.