These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37478625)

  • 1. Untangling the structure and function of complex neuronal networks: Comment on "Structure and function in artificial, zebrafish and human neural networks".
    Algar SD; Rodger J; Small M
    Phys Life Rev; 2023 Sep; 46():182-184. PubMed ID: 37478625
    [No Abstract]   [Full Text] [Related]  

  • 2. Decoding brain complexity: Structural-functional interplay in neural networks: Comment on "Structure and function in artificial, zebrafish and human neural networks" by Peng Ji et al.
    Li Q; Berner R; Wang X
    Phys Life Rev; 2023 Dec; 47():87-89. PubMed ID: 37776745
    [No Abstract]   [Full Text] [Related]  

  • 3. Complexity in structural and functional brain networks. Comment on "Structure and function in artificial, zebrafish and human neural networks" by Ji et al.
    Li C; Hens C
    Phys Life Rev; 2023 Dec; 47():131-132. PubMed ID: 37866095
    [No Abstract]   [Full Text] [Related]  

  • 4. On the structure function dichotomy: A perspective from human brain network modeling. Comment on "Structure and function in artificial, zebrafish and human neural networks" by Peng Ji et al.
    Petkoski S
    Phys Life Rev; 2023 Dec; 47():165-167. PubMed ID: 37918193
    [No Abstract]   [Full Text] [Related]  

  • 5. More is definitely different: The zebrafish as witness: Comment on "Structure and function in artificial, zebrafish and human neural networks" by Peng Ji et al.
    Tyloo M
    Phys Life Rev; 2023 Sep; 46():71-72. PubMed ID: 37285666
    [No Abstract]   [Full Text] [Related]  

  • 6. Bridging network structures and dynamics: Comment on "Structure and function in artificial, zebrafish and human neural networks" by Ji et al.
    Ma Z
    Phys Life Rev; 2023 Sep; 46():245-247. PubMed ID: 37506591
    [No Abstract]   [Full Text] [Related]  

  • 7. Neuromodulatory system in network science: Comment on "Structure and function in artificial, zebrafish and human neural networks" by Peng Ji et al.
    Li D; Mu Y
    Phys Life Rev; 2023 Sep; 46():155-157. PubMed ID: 37442033
    [No Abstract]   [Full Text] [Related]  

  • 8. Structure and function in artificial, zebrafish and human neural networks.
    Ji P; Wang Y; Peron T; Li C; Nagler J; Du J
    Phys Life Rev; 2023 Jul; 45():74-111. PubMed ID: 37182376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergent Temperature Representations in Artificial and Biological Neural Networks.
    Haesemeyer M; Schier AF; Engert F
    Neuron; 2019 Sep; 103(6):1123-1134.e6. PubMed ID: 31376984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zebrafish Neuroscience: Using Artificial Neural Networks to Help Understand Brains.
    Ahrens MB
    Curr Biol; 2019 Nov; 29(21):R1138-R1140. PubMed ID: 31689401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal regeneration in a zebrafish model of adult brain injury.
    Kishimoto N; Shimizu K; Sawamoto K
    Dis Model Mech; 2012 Mar; 5(2):200-9. PubMed ID: 22028327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the complexity of neural networks: Comment on "Structure and function in artificial, zebrafish and human neural networks" by Peng Ji et al.
    Kang L; Liu Z
    Phys Life Rev; 2023 Sep; 46():158-160. PubMed ID: 37442034
    [No Abstract]   [Full Text] [Related]  

  • 13. Neural networks help zebrafish to step up as a model for efficient drug screening in glioblastoma.
    Ferrarese R; Carro MS
    Neuro Oncol; 2022 May; 24(5):739-740. PubMed ID: 35182417
    [No Abstract]   [Full Text] [Related]  

  • 14. Model discovery to link neural activity to behavioral tasks.
    Costabile JD; Balakrishnan KA; Schwinn S; Haesemeyer M
    Elife; 2023 Jun; 12():. PubMed ID: 37278516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence-driven phenotyping of zebrafish psychoactive drug responses.
    Bozhko DV; Myrov VO; Kolchanova SM; Polovian AI; Galumov GK; Demin KA; Zabegalov KN; Strekalova T; de Abreu MS; Petersen EV; Kalueff AV
    Prog Neuropsychopharmacol Biol Psychiatry; 2022 Jan; 112():110405. PubMed ID: 34320403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning Brain Dynamics With Coupled Low-Dimensional Nonlinear Oscillators and Deep Recurrent Networks.
    Abrevaya G; Dumas G; Aravkin AY; Zheng P; Gagnon-Audet JC; Kozloski J; Polosecki P; Lajoie G; Cox D; Dawson SP; Cecchi G; Rish I
    Neural Comput; 2021 Jul; 33(8):2087-2127. PubMed ID: 34310676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled generation of self-sustained oscillations in complex artificial neural networks.
    Liu C; Dong JQ; Chen QJ; Huang ZG; Huang L; Zhou HJ; Lai YC
    Chaos; 2021 Nov; 31(11):113127. PubMed ID: 34881621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial Neural Networks for Neuroscientists: A Primer.
    Yang GR; Wang XJ
    Neuron; 2020 Sep; 107(6):1048-1070. PubMed ID: 32970997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromorphic Binarized Polariton Networks.
    Mirek R; Opala A; Comaron P; Furman M; Król M; Tyszka K; Seredyński B; Ballarini D; Sanvitto D; Liew TCH; Pacuski W; Suffczyński J; Szczytko J; Matuszewski M; Piętka B
    Nano Lett; 2021 May; 21(9):3715-3720. PubMed ID: 33635656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resilience of neural networks for locomotion.
    Haspel G; Severi KE; Fauci LJ; Cohen N; Tytell ED; Morgan JR
    J Physiol; 2021 Aug; 599(16):3825-3840. PubMed ID: 34187088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.