These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 37478955)
1. Bayesian network highlights the contributing factors for efficient arsenic phytoextraction by Pteris vittata in a contaminated field. Kudo H; Han N; Yokoyama D; Matsumoto T; Chien MF; Kikuchi J; Inoue C Sci Total Environ; 2023 Nov; 899():165654. PubMed ID: 37478955 [TBL] [Abstract][Full Text] [Related]
2. Rhizospheric plant-microbe synergistic interactions achieve efficient arsenic phytoextraction by Pteris vittata. Yang C; Han N; Inoue C; Yang YL; Nojiri H; Ho YN; Chien MF J Hazard Mater; 2022 Jul; 434():128870. PubMed ID: 35452977 [TBL] [Abstract][Full Text] [Related]
3. Empirical Evidence of Arsenite Oxidase Gene as an Indicator Accounting for Arsenic Phytoextraction by Han N; Yang C; Shimomura S; Inoue C; Chien MF Int J Environ Res Public Health; 2022 Feb; 19(3):. PubMed ID: 35162818 [TBL] [Abstract][Full Text] [Related]
4. Cupriavidus basilensis strain r507, a toxic arsenic phytoextraction facilitator, potentiates the arsenic accumulation by Pteris vittata. Yang C; Ho YN; Makita R; Inoue C; Chien MF Ecotoxicol Environ Saf; 2020 Mar; 190():110075. PubMed ID: 31881405 [TBL] [Abstract][Full Text] [Related]
5. Long-term effectiveness of microbe-assisted arsenic phytoremediation by Pteris vittata in field trials. Yang C; Ho YN; Inoue C; Chien MF Sci Total Environ; 2020 Oct; 740():140137. PubMed ID: 32927575 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of phytoextraction efficiency coupling Liu ZY; Yang R; Xiang XY; Niu LL; Yin DX Int J Phytoremediation; 2023; 25(13):1810-1818. PubMed ID: 37066697 [TBL] [Abstract][Full Text] [Related]
7. Enterobacter sp. E1 increased arsenic uptake in Pteris vittata by promoting plant growth and dissolving Fe-bound arsenic. Li A; Lu Y; Zhen D; Guo Z; Wang G; Shi K; Liao S Chemosphere; 2023 Jul; 329():138663. PubMed ID: 37044144 [TBL] [Abstract][Full Text] [Related]
8. Effect of Stevia rebaudiana Bertoni residue on the arsenic phytoextraction efficiency of Pteris vittata L. Lu Y; Liao S; Ding Y; He Y; Gao Z; Song D; Tian W; Zhang X J Hazard Mater; 2022 Jan; 421():126678. PubMed ID: 34333410 [TBL] [Abstract][Full Text] [Related]
9. Intercropping efficiency of Pteris vittata with two legume plants: Impacts of soil arsenic concentrations. Wang W; Yang X; Mo Q; Li Y; Meng D; Li H Ecotoxicol Environ Saf; 2023 Jul; 259():115004. PubMed ID: 37196521 [TBL] [Abstract][Full Text] [Related]
10. Soil texture and climate limit cultivation of the arsenic hyperaccumulator Pteris vittata for phytoextraction in a long-term field study. Matzen SL; Olson AL; Pallud CE J Hazard Mater; 2022 Aug; 436():129151. PubMed ID: 35739697 [TBL] [Abstract][Full Text] [Related]
11. Phytoextraction of arsenic-contaminated soil with Pteris vittata in Henan Province, China: comprehensive evaluation of remediation efficiency correcting for atmospheric depositions. Lei M; Wan X; Guo G; Yang J; Chen T Environ Sci Pollut Res Int; 2018 Jan; 25(1):124-131. PubMed ID: 27928750 [TBL] [Abstract][Full Text] [Related]
12. Bioaugmentation with As-transforming bacteria improves arsenic availability and uptake by the hyperaccumulator plant Abou-Shanab RAI; Santelli CM; Sadowsky MJ Int J Phytoremediation; 2022; 24(4):420-428. PubMed ID: 34334062 [TBL] [Abstract][Full Text] [Related]
13. Rhizosphere interactions between PAH-degrading bacteria and Pteris vittata L. on arsenic and phenanthrene dynamics and transformation. Sun L; Zhu G; Liao X Chemosphere; 2021 Dec; 285():131415. PubMed ID: 34265710 [TBL] [Abstract][Full Text] [Related]
14. Indigenous soil bacteria and the hyperaccumulator Pteris vittata mediate phytoremediation of soil contaminated with arsenic species. Abou-Shanab RAI; Mathai PP; Santelli C; Sadowsky MJ Ecotoxicol Environ Saf; 2020 Jun; 195():110458. PubMed ID: 32193021 [TBL] [Abstract][Full Text] [Related]
15. Arsenic induced plant growth by increasing its nutrient uptake in As-hyperaccumulator Pteris vittata: Comparison of arsenate and arsenite. Peng YJ; Hu CY; Li W; Dai ZH; Liu CJ; Ma LQ Environ Pollut; 2023 Apr; 322():121168. PubMed ID: 36740166 [TBL] [Abstract][Full Text] [Related]
16. Speciation and uptake of antimony and arsenic by two populations of Pteris vittata L. and Holcus lanatus L. from co-contaminated soil. Wan X; Yang J; Lei M Environ Sci Pollut Res Int; 2018 Nov; 25(32):32447-32457. PubMed ID: 30232773 [TBL] [Abstract][Full Text] [Related]
17. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. Zeng P; Guo Z; Xiao X; Peng C; Feng W; Xin L; Xu Z Sci Total Environ; 2019 Feb; 650(Pt 1):594-603. PubMed ID: 30205349 [TBL] [Abstract][Full Text] [Related]
18. Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata. Xu JY; Li HB; Liang S; Luo J; Ma LQ Environ Pollut; 2014 Nov; 194():105-111. PubMed ID: 25103044 [TBL] [Abstract][Full Text] [Related]
19. Bacteria associated with Comamonadaceae are key arsenite oxidizer associated with Pteris vittata root. Huang D; Sun X; Ghani MU; Li B; Yang J; Chen Z; Kong T; Xiao E; Liu H; Wang Q; Sun W Environ Pollut; 2024 May; 349():123909. PubMed ID: 38582183 [TBL] [Abstract][Full Text] [Related]
20. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Ma J; Lei E; Lei M; Liu Y; Chen T Chemosphere; 2018 Mar; 194():737-744. PubMed ID: 29247933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]