These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37479868)

  • 1. Electroosmotically actuated peristaltic-ciliary flow of propylene glycol + water conveying titania nanoparticles.
    Akram J; Akbar NS
    Sci Rep; 2023 Jul; 13(1):11801. PubMed ID: 37479868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroosmosis-Optimized Thermal Model for Peristaltic Transportation of Thermally Radiative Magnetized Liquid with Nonlinear Convection.
    Akbar Y; Alotaibi H
    Entropy (Basel); 2022 Apr; 24(4):. PubMed ID: 35455194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrothermal blood streaming conveying hybridized nanoparticles in a non-uniform endoscopic conduit.
    Das S; Karmakar P; Ali A
    Med Biol Eng Comput; 2022 Nov; 60(11):3125-3151. PubMed ID: 36103033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroosmotically driven flow of micropolar bingham viscoplastic fluid in a wavy microchannel: application of computational biology stomach anatomy.
    Saleem A; Kiani MN; Nadeem S; Akhtar S; Ghalambaz M; Issakhov A
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(3):289-298. PubMed ID: 33508967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced thermal effectiveness for electroosmosis modulated peristaltic flow of modified hybrid nanofluid with chemical reactions.
    Hussain A; Wang J; Akbar Y; Shah R
    Sci Rep; 2022 Aug; 12(1):13756. PubMed ID: 35962000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels.
    Prakash J; Ramesh K; Tripathi D; Kumar R
    Microvasc Res; 2018 Jul; 118():162-172. PubMed ID: 29596861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle aggregation and electro-osmotic propulsion in peristaltic transport of third-grade nanofluids through porous tube.
    Dolui S; Bhaumik B; De S; Changdar S
    Comput Biol Med; 2024 Jun; 176():108617. PubMed ID: 38772055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model.
    Akram J; Akbar NS; Tripathi D
    Microvasc Res; 2020 Nov; 132():104062. PubMed ID: 32828761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model.
    Akram J; Akbar NS; Tripathi D
    Microvasc Res; 2023 Jan; 145():104435. PubMed ID: 36115732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microvascular blood flow with heat transfer in a wavy channel having electroosmotic effects.
    Nadeem S; Kiani MN; Saleem A; Issakhov A
    Electrophoresis; 2020 Jul; 41(13-14):1198-1205. PubMed ID: 32304245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid.
    Tanveer A; Khan M; Salahuddin T; Malik MY
    Comput Methods Programs Biomed; 2019 Oct; 180():105005. PubMed ID: 31421600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk.
    Hafeez A; Khan M; Ahmed J
    Comput Methods Programs Biomed; 2020 Jul; 191():105342. PubMed ID: 32113101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EMHD Nanofluid Flow with Radiation and Variable Heat Flux Effects along a Slandering Stretching Sheet.
    Ali A; Khan HS; Saleem S; Hussan M
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entropy generation in thermally radiated hybrid nanofluid through an electroosmotic pump with ohmic heating: Case of synthetic cilia regulated stream.
    Munawar S; Saleem N
    Sci Prog; 2021; 104(3):368504211025921. PubMed ID: 34261390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroosmotic flow of cobalt-ferrite nanoparticles in water and ethylene glycol through a ciliary annulus: A biomedical application.
    Riaz A; Mehmood K; Alhamzi G; Alharbi KAM
    Electrophoresis; 2024 Jul; 45(13-14):1198-1211. PubMed ID: 37592853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electro-osmotic peristaltic flow and heat transfer in an ionic viscoelastic fluid through a curved micro-channel with viscous dissipation.
    Khan AA; Akram K; Zaman A; Anwar Bég O; Bég TA
    Proc Inst Mech Eng H; 2022 Aug; 236(8):1080-1092. PubMed ID: 35735142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and computational analysis of hybrid class nanomaterials subject to entropy generation.
    Khan MI; Alsaedi A; Hayat T; Khan NB
    Comput Methods Programs Biomed; 2019 Oct; 179():104973. PubMed ID: 31443855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peristaltic activity for electro-kinetic complex driven cilia transportation through a non-uniform channel.
    Javid K; Riaz M; Chu YM; Ijaz Khan M; Ullah Khan S; Kadry S
    Comput Methods Programs Biomed; 2021 Mar; 200():105926. PubMed ID: 33450503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and interpretation of peristaltic transport in single wall carbon nanotube flow with entropy optimization and Newtonian heating.
    Farooq S; Khan MI; Riahi A; Chammam W; Khan WA
    Comput Methods Programs Biomed; 2020 Aug; 192():105435. PubMed ID: 32203793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joule heating and zeta potential effects on peristaltic blood flow through porous micro vessels altered by electrohydrodynamic.
    Ranjit NK; Shit GC; Tripathi D
    Microvasc Res; 2018 May; 117():74-89. PubMed ID: 29291432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.