BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 37480009)

  • 1. xenoGI 3: using the DTLOR model to reconstruct the evolution of gene families in clades of microbes.
    Liu N; Gonzalez TA; Fischer J; Hong C; Johnson M; Mawhorter R; Mugnatto F; Soh R; Somji S; Wirth JS; Libeskind-Hadas R; Bush EC
    BMC Bioinformatics; 2023 Jul; 24(1):295. PubMed ID: 37480009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. xenoGI: reconstructing the history of genomic island insertions in clades of closely related bacteria.
    Bush EC; Clark AE; DeRanek CA; Eng A; Forman J; Heath K; Lee AB; Stoebel DM; Wang Z; Wilber M; Wu H
    BMC Bioinformatics; 2018 Feb; 19(1):32. PubMed ID: 29402213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximum parsimony reconciliation in the DTLOR model.
    Liu J; Mawhorter R; Liu N; Santichaivekin S; Bush E; Libeskind-Hadas R
    BMC Bioinformatics; 2021 Aug; 22(Suppl 10):394. PubMed ID: 34348661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the impact of uncertain gene tree rooting on duplication-transfer-loss reconciliation.
    Kundu S; Bansal MS
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):290. PubMed ID: 30367593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral gene transfer, rearrangement, reconciliation.
    Patterson M; Szöllősi G; Daubin V; Tannier E
    BMC Bioinformatics; 2013; 14 Suppl 15(Suppl 15):S4. PubMed ID: 24564205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes.
    Mirkin BG; Fenner TI; Galperin MY; Koonin EV
    BMC Evol Biol; 2003 Jan; 3():2. PubMed ID: 12515582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees.
    Stolzer M; Lai H; Xu M; Sathaye D; Vernot B; Durand D
    Bioinformatics; 2012 Sep; 28(18):i409-i415. PubMed ID: 22962460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
    Kordi M; Bansal MS
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1077-1090. PubMed ID: 28622673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome trees constructed using five different approaches suggest new major bacterial clades.
    Wolf YI; Rogozin IB; Grishin NV; Tatusov RL; Koonin EV
    BMC Evol Biol; 2001 Oct; 1():8. PubMed ID: 11734060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iGTP: a software package for large-scale gene tree parsimony analysis.
    Chaudhary R; Bansal MS; Wehe A; Fernández-Baca D; Eulenstein O
    BMC Bioinformatics; 2010 Nov; 11():574. PubMed ID: 21092314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees.
    Wu YC; Rasmussen MD; Bansal MS; Kellis M
    Genome Res; 2014 Mar; 24(3):475-86. PubMed ID: 24310000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inference of Ancient Whole-Genome Duplications and the Evolution of Gene Duplication and Loss Rates.
    Zwaenepoel A; Van de Peer Y
    Mol Biol Evol; 2019 Jul; 36(7):1384-1404. PubMed ID: 31004147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GeneRax: A Tool for Species-Tree-Aware Maximum Likelihood-Based Gene  Family Tree Inference under Gene Duplication, Transfer, and Loss.
    Morel B; Kozlov AM; Stamatakis A; Szöllősi GJ
    Mol Biol Evol; 2020 Sep; 37(9):2763-2774. PubMed ID: 32502238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realistic Gene Transfer to Gene Duplication Ratios Identify Different Roots in the Bacterial Phylogeny Using a Tree Reconciliation Method.
    Bremer N; Knopp M; Martin WF; Tria FDK
    Life (Basel); 2022 Jul; 12(7):. PubMed ID: 35888084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution through segmental duplications and losses: a Super-Reconciliation approach.
    Delabre M; El-Mabrouk N; Huber KT; Lafond M; Moulton V; Noutahi E; Castellanos MS
    Algorithms Mol Biol; 2020; 15():12. PubMed ID: 32508979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-scale phylogenetic analysis finds extensive gene transfer among fungi.
    Szöllősi GJ; Davín AA; Tannier E; Daubin V; Boussau B
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1678):20140335. PubMed ID: 26323765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GATC: a genetic algorithm for gene tree construction under the Duplication-Transfer-Loss model of evolution.
    Noutahi E; El-Mabrouk N
    BMC Genomics; 2018 May; 19(Suppl 2):102. PubMed ID: 29764363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient error correction algorithms for gene tree reconciliation based on duplication, duplication and loss, and deep coalescence.
    Chaudhary R; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S11. PubMed ID: 22759416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algorithms: simultaneous error-correction and rooting for gene tree reconciliation and the gene duplication problem.
    Górecki P; Eulenstein O
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S14. PubMed ID: 22759419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the complexity of non-binary tree reconciliation with endosymbiotic gene transfer.
    Gascon M; El-Mabrouk N
    Algorithms Mol Biol; 2023 Jul; 18(1):9. PubMed ID: 37518001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.