These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37480040)

  • 1. Non-invasive arterial blood pressure measurement and SpO
    Chu Y; Tang K; Hsu YC; Huang T; Wang D; Li W; Savitz SI; Jiang X; Shams S
    BMC Med Inform Decis Mak; 2023 Jul; 23(1):131. PubMed ID: 37480040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach.
    Athaya T; Choi S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography.
    Kim DK; Kim YT; Kim H; Kim DJ
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3697-3707. PubMed ID: 35511844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Phys Eng Sci Med; 2023 Dec; 46(4):1589-1605. PubMed ID: 37747644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning method for continuous noninvasive blood pressure monitoring using photoplethysmography.
    Liang H; He W; Xu Z
    Physiol Meas; 2023 May; 44(5):. PubMed ID: 37116508
    [No Abstract]   [Full Text] [Related]  

  • 6. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Cuffless Continuous Blood Pressure Estimation Using 1D Squeeze U-Net Model: A Progress toward mHealth.
    Athaya T; Choi S
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network.
    Slapničar G; Mlakar N; Luštrek M
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully convolutional neural network and PPG signal for arterial blood pressure waveform estimation.
    Zhou Y; Tan Z; Liu Y; Cheng H
    Physiol Meas; 2023 Sep; 44(7):. PubMed ID: 37402386
    [No Abstract]   [Full Text] [Related]  

  • 10. A clinical set-up for noninvasive blood pressure monitoring using two photoplethysmograms and based on convolutional neural networks.
    Esmaelpoor J; Sanat ZM; Moradi MH
    Biomed Tech (Berl); 2021 Aug; 66(4):375-385. PubMed ID: 33826809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BP-diff: a conditional diffusion model for cuffless continuous BP waveform estimation using U-Net.
    Liu Y; Yu J; Mou H
    Physiol Meas; 2024 Oct; 45(10):. PubMed ID: 39321963
    [No Abstract]   [Full Text] [Related]  

  • 12. Schrödinger spectrum based continuous cuff-less blood pressure estimation using clinically relevant features from PPG signal and its second derivative.
    Sarkar S; Ghosh A
    Comput Biol Med; 2023 Nov; 166():107558. PubMed ID: 37806054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals.
    Haque CA; Kwon TH; Kim KD
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network.
    Khodabakhshi MB; Eslamyeh N; Sadredini SZ; Ghamari M
    Comput Methods Programs Biomed; 2022 Nov; 226():107131. PubMed ID: 36137326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections.
    Lai K; Wang X; Cao C
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoplethysmography-based cuffless blood pressure estimation: an image encoding and fusion approach.
    Liu Y; Yu J; Mou H
    Physiol Meas; 2023 Dec; 44(12):. PubMed ID: 38099538
    [No Abstract]   [Full Text] [Related]  

  • 17. Personalized Blood Pressure Estimation Using Photoplethysmography: A Transfer Learning Approach.
    Leitner J; Chiang PH; Dey S
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):218-228. PubMed ID: 34077378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive blood pressure estimation combining deep neural networks with pre-training and partial fine-tuning.
    Meng Z; Yang X; Liu X; Wang D; Han X
    Physiol Meas; 2022 Nov; 43(11):. PubMed ID: 36301705
    [No Abstract]   [Full Text] [Related]  

  • 19. An efficient model for extracting respiratory and blood oxygen saturation data from photoplethysmogram signals by removing motion artifacts using heuristic-aided ensemble learning model.
    Bondala VR; Komalla AR
    Comput Biol Med; 2024 Sep; 180():108911. PubMed ID: 39089111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms.
    Baker S; Xiang W; Atkinson I
    Comput Methods Programs Biomed; 2021 Aug; 207():106191. PubMed ID: 34077866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.