BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37480608)

  • 1. Discovery of new strains for furfural degradation using adaptive laboratory evolution in Saccharomyces cerevisiae.
    Wang H; Li Q; Zhang Z; Ayepa E; Xiang Q; Yu X; Zhao K; Zou L; Gu Y; Li X; Chen Q; Zhang X; Yang Y; Jin X; Yin H; Liu ZL; Tang T; Liu B; Ma M
    J Hazard Mater; 2023 Oct; 459():132090. PubMed ID: 37480608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases.
    Heer D; Heine D; Sauer U
    Appl Environ Microbiol; 2009 Dec; 75(24):7631-8. PubMed ID: 19854918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insertion of transposon in the vicinity of SSK2 confers enhanced tolerance to furfural in Saccharomyces cerevisiae.
    Kim HS; Kim NR; Kim W; Choi W
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):531-40. PubMed ID: 22639140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Improvement of inhibitors tolerance of Saccharomyces cerevisiae by overexpressing of long chain sphingoid kinases encoding gene LCB4].
    He Y; Zi L; Zhang B; Xu J; Wang D; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2018 Jun; 34(6):906-915. PubMed ID: 29943536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.
    Zhao X; Tang J; Wang X; Yang R; Zhang X; Gu Y; Li X; Ma M
    Yeast; 2015 May; 32(5):409-22. PubMed ID: 25656244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flux control-based design of furfural-resistance strains of Saccharomyces cerevisiae for lignocellulosic biorefinery.
    Unrean P
    Bioprocess Biosyst Eng; 2017 Apr; 40(4):611-623. PubMed ID: 28025701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural.
    Jung YH; Kim S; Yang J; Seo JH; Kim KH
    Microb Biotechnol; 2017 Mar; 10(2):395-404. PubMed ID: 27928897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive laboratory evolution to obtain furfural tolerant
    Yao L; Jia Y; Zhang Q; Zheng X; Yang H; Dai J; Chen X
    Front Microbiol; 2023; 14():1333777. PubMed ID: 38239732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH.
    Moon J; Liu ZL
    Enzyme Microb Technol; 2012 Feb; 50(2):115-20. PubMed ID: 22226197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.
    Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereochemistry of furfural reduction by a Saccharomyces cerevisiae aldehyde reductase that contributes to in situ furfural detoxification.
    Bowman MJ; Jordan DB; Vermillion KE; Braker JD; Moon J; Liu ZL
    Appl Environ Microbiol; 2010 Aug; 76(15):4926-32. PubMed ID: 20525870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae.
    Almeida JR; Röder A; Modig T; Laadan B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):939-45. PubMed ID: 18330568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.
    Liu ZL; Slininger PJ; Gorsich SW
    Appl Biochem Biotechnol; 2005; 121-124():451-60. PubMed ID: 15917621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.
    Sasano Y; Watanabe D; Ukibe K; Inai T; Ohtsu I; Shimoi H; Takagi H
    J Biosci Bioeng; 2012 Apr; 113(4):451-5. PubMed ID: 22178024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural.
    Jordan DB; Braker JD; Bowman MJ; Vermillion KE; Moon J; Liu ZL
    Biochim Biophys Acta; 2011 Dec; 1814(12):1686-94. PubMed ID: 21890004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic and comparative transcriptomics analysis of RDS1 overexpression reveal tolerance of Saccharomyces cerevisiae to furfural.
    Tafere Abrha G; Li Q; Kuang X; Xiao D; Ayepa E; Wu J; Chen H; Zhang Z; Liu Y; Yu X; Xiang Q; Ma M
    J Biosci Bioeng; 2023 Oct; 136(4):270-277. PubMed ID: 37544800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlethal Furfural Exposure Causes Genomic Alterations and Adaptability Evolution in Saccharomyces cerevisiae.
    Qi L; Zhu YX; Wang YK; Tang XX; Li KJ; He M; Sui Y; Wang PM; Zheng DQ; Zhang K
    Microbiol Spectr; 2023 Aug; 11(4):e0121623. PubMed ID: 37395645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.