These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37480709)

  • 1. Collagen fibril tensile response described by a nonlinear Maxwell model.
    Handelshauser M; Chiang YR; Marchetti-Deschmann M; Thurner PJ; Andriotis OG
    J Mech Behav Biomed Mater; 2023 Sep; 145():105991. PubMed ID: 37480709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils.
    Yang F; Das D; Karunakaran K; Genin GM; Thomopoulos S; Chasiotis I
    Acta Biomater; 2023 Jun; 163():63-77. PubMed ID: 35259515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale.
    Fielder M; Nair AK
    Biomech Model Mechanobiol; 2019 Feb; 18(1):57-68. PubMed ID: 30088113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bowstring Stretching and Quantitative Imaging of Single Collagen Fibrils via Atomic Force Microscopy.
    Quigley AS; Veres SP; Kreplak L
    PLoS One; 2016; 11(9):e0161951. PubMed ID: 27598334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening.
    Liu J; Das D; Yang F; Schwartz AG; Genin GM; Thomopoulos S; Chasiotis I
    Acta Biomater; 2018 Oct; 80():217-227. PubMed ID: 30240954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up.
    Gautieri A; Vesentini S; Redaelli A; Buehler MJ
    Nano Lett; 2011 Feb; 11(2):757-66. PubMed ID: 21207932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transverse mechanical properties of collagen fibers from nanoindentation.
    Aifantis KE; Shrivastava S; Odegard GM
    J Mater Sci Mater Med; 2011 Jun; 22(6):1375-81. PubMed ID: 21556981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the viscoelastic behavior of collagen matrices through relaxation time distribution spectrum.
    Xu B; Li H; Zhang Y
    Biomatter; 2013; 3(3):. PubMed ID: 23628869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the inelastic response of collagen fibrils: A viscoelastic-plastic constitutive model.
    Fontenele FF; Bouklas N
    Acta Biomater; 2023 Jun; 163():78-90. PubMed ID: 35835288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of tissue hydration on nanoscale structural morphology and mechanics of individual Type I collagen fibrils in the Brtl mouse model of Osteogenesis Imperfecta.
    Kemp AD; Harding CC; Cabral WA; Marini JC; Wallace JM
    J Struct Biol; 2012 Dec; 180(3):428-38. PubMed ID: 23041293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic shear lag model to predict the micromechanical behavior of tendon under dynamic tensile loading.
    Wu J; Yuan H; Li L; Fan K; Qian S; Li B
    J Theor Biol; 2018 Jan; 437():202-213. PubMed ID: 29111420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils.
    Yang L; van der Werf KO; Dijkstra PJ; Feijen J; Bennink ML
    J Mech Behav Biomed Mater; 2012 Feb; 6():148-58. PubMed ID: 22301184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic properties of model segments of collagen molecules.
    Gautieri A; Vesentini S; Redaelli A; Buehler MJ
    Matrix Biol; 2012 Mar; 31(2):141-9. PubMed ID: 22204879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased stiffness of collagen fibrils following cyclic tensile loading.
    Chen ML; Ruberti JW; Nguyen TD
    J Mech Behav Biomed Mater; 2018 Jun; 82():345-354. PubMed ID: 29655120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils.
    Depalle B; Qin Z; Shefelbine SJ; Buehler MJ
    J Mech Behav Biomed Mater; 2015 Dec; 52():1-13. PubMed ID: 25153614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation micromechanisms of collagen fibrils under uniaxial tension.
    Tang Y; Ballarini R; Buehler MJ; Eppell SJ
    J R Soc Interface; 2010 May; 7(46):839-50. PubMed ID: 19897533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the effect of collagen fibril alignment on ligament mechanical behavior.
    Stender CJ; Rust E; Martin PT; Neumann EE; Brown RJ; Lujan TJ
    Biomech Model Mechanobiol; 2018 Apr; 17(2):543-557. PubMed ID: 29177933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On modelling nonlinear viscoelastic effects in ligaments.
    Peña E; Peña JA; Doblaré M
    J Biomech; 2008 Aug; 41(12):2659-66. PubMed ID: 18672245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.