These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37481223)

  • 1. FDXR-associated disease in a Chinese cohort: Unraveling expanded ocular phenotypes and genetic spectrum.
    Wei X; Li H; Zhu T; Yao F; Sui R
    Exp Eye Res; 2023 Sep; 234():109600. PubMed ID: 37481223
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Yi S; Zheng Y; Yi Z; Wang Y; Jiang Y; Ouyang J; Li S; Xiao X; Sun W; Wang P; Zhang Q
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the FDXR-Associated Disease Phenotype: Retinal Dystrophy Is a Recurrent Ocular Feature.
    Jurkute N; Shanmugarajah PD; Hadjivassiliou M; Higgs J; Vojcic M; Horrocks I; Nadjar Y; Touitou V; Lenaers G; Poh R; Acheson J; Robson AG; Raymond FL; Reilly MM; Yu-Wai-Man P; Moore AT; Webster AR; Arno G;
    Invest Ophthalmol Vis Sci; 2021 May; 62(6):2. PubMed ID: 33938912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of Steroid 5α-Reductase Type 3 Congenital Disorder of Glycosylation With Early-Onset Retinal Dystrophy.
    Taylor RL; Arno G; Poulter JA; Khan KN; Morarji J; Hull S; Pontikos N; Rueda Martin A; Smith KR; Ali M; Toomes C; McKibbin M; Clayton-Smith J; Grunewald S; Michaelides M; Moore AT; Hardcastle AJ; Inglehearn CF; Webster AR; Black GC;
    JAMA Ophthalmol; 2017 Apr; 135(4):339-347. PubMed ID: 28253385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PHENOTYPIC VARIABILITY OF RECESSIVE RDH12-ASSOCIATED RETINAL DYSTROPHY.
    Zou X; Fu Q; Fang S; Li H; Ge Z; Yang L; Xu M; Sun Z; Li H; Li Y; Dong F; Chen R; Sui R
    Retina; 2019 Oct; 39(10):2040-2052. PubMed ID: 30134391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical and Molecular Features of a Chinese Cohort With Syndromic and Nonsyndromic Retinal Dystrophies Related to the CEP290 Gene.
    Zhu T; Shen Y; Sun Z; Han X; Wei X; Li W; Lu C; Cheng T; Zou X; Li H; Cao Z; Gao H; Ma X; Luo M; Sui R
    Am J Ophthalmol; 2023 Apr; 248():96-106. PubMed ID: 36493848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic features of CRB1-associated early-onset severe retinal dystrophy and the different molecular approaches to identifying the disease-causing variants.
    Kousal B; Dudakova L; Gaillyova R; Hejtmankova M; Diblik P; Michaelides M; Liskova P
    Graefes Arch Clin Exp Ophthalmol; 2016 Sep; 254(9):1833-9. PubMed ID: 27113771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding the clinical and genetic spectrum of FDXR deficiency by functional validation of variants of uncertain significance.
    Stenton SL; Piekutowska-Abramczuk D; Kulterer L; Kopajtich R; Claeys KG; Ciara E; Eisen J; Płoski R; Pronicka E; Malczyk K; Wagner M; Wortmann SB; Prokisch H
    Hum Mutat; 2021 Mar; 42(3):310-319. PubMed ID: 33348459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SSBP1-Disease Update: Expanding the Genetic and Clinical Spectrum, Reporting Variable Penetrance and Confirming Recessive Inheritance.
    Jurkute N; D'Esposito F; Robson AG; Pitceathly RDS; Cordeiro F; Raymond FL; Moore AT; Michaelides M; Yu-Wai-Man P; Webster AR; Arno G;
    Invest Ophthalmol Vis Sci; 2021 Dec; 62(15):12. PubMed ID: 34905022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal Phenotype of Patients With Isolated Retinal Degeneration Due to CLN3 Pathogenic Variants in a French Retinitis Pigmentosa Cohort.
    Smirnov VM; Nassisi M; Solis Hernandez C; Méjécase C; El Shamieh S; Condroyer C; Antonio A; Meunier I; Andrieu C; Defoort-Dhellemmes S; Mohand-Said S; Sahel JA; Audo I; Zeitz C
    JAMA Ophthalmol; 2021 Mar; 139(3):278-291. PubMed ID: 33507216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reevaluation of the Retinal Dystrophy Due to Recessive Alleles of RGR With the Discovery of a Cis-Acting Mutation in CDHR1.
    Arno G; Hull S; Carss K; Dev-Borman A; Chakarova C; Bujakowska K; van den Born LI; Robson AG; Holder GE; Michaelides M; Cremers FP; Pierce E; Raymond FL; Moore AT; Webster AR
    Invest Ophthalmol Vis Sci; 2016 Sep; 57(11):4806-13. PubMed ID: 27623334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Hyperautofluorescence Rings as a Sign of CFAP410-related Retinopathy.
    Li X; Wang Y; Wang J; Wang P; Zhang Q
    Invest Ophthalmol Vis Sci; 2023 Dec; 64(15):44. PubMed ID: 38153748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and clinical findings in a Chinese cohort with Leber congenital amaurosis and early onset severe retinal dystrophy.
    Xu K; Xie Y; Sun T; Zhang X; Chen C; Li Y
    Br J Ophthalmol; 2020 Jul; 104(7):932-937. PubMed ID: 31630094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening of SPATA7 in patients with Leber congenital amaurosis and severe childhood-onset retinal dystrophy reveals disease-causing mutations.
    Mackay DS; Ocaka LA; Borman AD; Sergouniotis PI; Henderson RH; Moradi P; Robson AG; Thompson DA; Webster AR; Moore AT
    Invest Ophthalmol Vis Sci; 2011 May; 52(6):3032-8. PubMed ID: 21310915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the cone-rod dystrophy retinal phenotype caused by novel homozygous DRAM2 mutations.
    Abad-Morales V; Burés-Jelstrup A; Navarro R; Ruiz-Nogales S; Méndez-Vendrell P; Corcóstegui B; Pomares E
    Exp Eye Res; 2019 Oct; 187():107752. PubMed ID: 31394102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide linkage and sequence analysis challenge CCDC66 as a human retinal dystrophy candidate gene and support a distinct NMNAT1-related fundus phenotype.
    Khan AO; Budde BS; Nürnberg P; Kawalia A; Lenzner S; Bolz HJ
    Clin Genet; 2018 Jan; 93(1):149-154. PubMed ID: 28369829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel C8orf37 Mutations in Patients with Early-onset Retinal Dystrophy, Macular Atrophy, Cataracts, and High Myopia.
    Katagiri S; Hayashi T; Yoshitake K; Akahori M; Ikeo K; Gekka T; Tsuneoka H; Iwata T
    Ophthalmic Genet; 2016; 37(1):68-75. PubMed ID: 25113443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical and genetic landscape of optic atrophy in 826 families: insights from 50 nuclear genes.
    Zheng Y; Wang P; Li S; Long Y; Jiang Y; Guo D; Jia X; Liu M; Zeng Y; Xiao X; Hejtmancik JF; Zhang Q; Sun W
    Brain; 2024 Oct; ():. PubMed ID: 39423307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening of a large cohort of leber congenital amaurosis and retinitis pigmentosa patients identifies novel LCA5 mutations and new genotype-phenotype correlations.
    Mackay DS; Borman AD; Sui R; van den Born LI; Berson EL; Ocaka LA; Davidson AE; Heckenlively JR; Branham K; Ren H; Lopez I; Maria M; Azam M; Henkes A; Blokland E; Qamar R; Webster AR; Cremers FPM; Moore AT; Koenekoop RK; ; Andreasson S; de Baere E; Bennett J; Chader GJ; Berger W; Golovleva I; Greenberg J; den Hollander AI; Klaver CCW; Klevering BJ; Lorenz B; Preising MN; Ramsear R; Roberts L; Roepman R; Rohrschneider K; Wissinger B
    Hum Mutat; 2013 Nov; 34(11):1537-1546. PubMed ID: 23946133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A detailed study of the phenotype of an autosomal dominant cone-rod dystrophy (CORD7) associated with mutation in the gene for RIM1.
    Michaelides M; Holder GE; Hunt DM; Fitzke FW; Bird AC; Moore AT
    Br J Ophthalmol; 2005 Feb; 89(2):198-206. PubMed ID: 15665353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.