These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 37481337)

  • 1. Differentiation Between Phyllodes Tumors and Fibroadenomas of Breast Using Mammography-based Machine Learning Methods: A Preliminary Study.
    Deng XY; Cao PW; Nan SM; Pan YP; Yu C; Pan T; Dai G
    Clin Breast Cancer; 2023 Oct; 23(7):729-736. PubMed ID: 37481337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRI-based radiomics analysis for differentiating phyllodes tumors of the breast from fibroadenomas.
    Tsuchiya M; Masui T; Terauchi K; Yamada T; Katyayama M; Ichikawa S; Noda Y; Goshima S
    Eur Radiol; 2022 Jun; 32(6):4090-4100. PubMed ID: 35044510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation Between Phyllodes Tumor and Fibroadenoma of the Breast: A Radiomics Prediction Model Based on Full-Field Digital Mammography & Digital Tomosynthesis.
    Zeng F; Zeng H; Yang J; Huang D; Liu J; Wen C; Qin G; Liao S; Chen W; Xu W; Wang S
    Technol Cancer Res Treat; 2024; 23():15330338241289474. PubMed ID: 39376181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Methods Based on CT Features Differentiate G1/G2 From G3 Pancreatic Neuroendocrine Tumors.
    Chen HY; Pan Y; Chen JY; Chen J; Liu LL; Yang YB; Li K; Ma Q; Shi L; Yu RS; Shao GL
    Acad Radiol; 2024 May; 31(5):1898-1905. PubMed ID: 38052672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning for differentiation of lipid-poor adrenal adenoma and subclinical pheochromocytoma based on multiphase CT imaging radiomics.
    Xiao DX; Zhong JP; Peng JD; Fan CG; Wang XC; Wen XL; Liao WW; Wang J; Yin XF
    BMC Med Imaging; 2023 Oct; 23(1):159. PubMed ID: 37845636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epithelial salivary gland tumors: Utility of radiomics analysis based on diffusion-weighted imaging for differentiation of benign from malignant tumors.
    Shao S; Mao N; Liu W; Cui J; Xue X; Cheng J; Zheng N; Wang B
    J Xray Sci Technol; 2020; 28(4):799-808. PubMed ID: 32538891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and Validation of Contrast-Enhanced CT-Based Deep Transfer Learning and Combined Clinical-Radiomics Model to Discriminate Thymomas and Thymic Cysts: A Multicenter Study.
    Yang Y; Cheng J; Peng Z; Yi L; Lin Z; He A; Jin M; Cui C; Liu Y; Zhong Q; Zuo M
    Acad Radiol; 2024 Apr; 31(4):1615-1628. PubMed ID: 37949702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammography-based radiomics analysis and imaging features for predicting the malignant risk of phyllodes tumours of the breast.
    Wang HJ; Cao PW; Nan SM; Deng XY
    Clin Radiol; 2023 May; 78(5):e386-e392. PubMed ID: 36868973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning model based on enhanced CT radiomics for the preoperative prediction of lymphovascular invasion in esophageal squamous cell carcinoma.
    Wang Y; Bai G; Huang M; Chen W
    Front Oncol; 2024; 14():1308317. PubMed ID: 38549935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation between Phyllodes Tumors and Fibroadenomas through Breast Ultrasound: Deep-Learning Model Outperforms Ultrasound Physicians.
    Shi Z; Ma Y; Ma X; Jin A; Zhou J; Li N; Sheng D; Chang C; Chen J; Li J
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pretreatment Multiparametric MRI-Based Radiomics Analysis for the Diagnosis of Breast Phyllodes Tumors.
    Ma X; Gong J; Hu F; Tang W; Gu Y; Peng W
    J Magn Reson Imaging; 2023 Feb; 57(2):633-645. PubMed ID: 35657093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study.
    Abbaspour S; Barahman M; Abdollahi H; Arabalibeik H; Hajainfar G; Babaei M; Iraji H; Barzegartahamtan M; Ay MR; Mahdavi SR
    Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37995359
    [No Abstract]   [Full Text] [Related]  

  • 13. A Radiomics Approach for the Classification of Fibroepithelial Lesions on Breast Ultrasonography.
    Sim Y; Lee SE; Kim EK; Kim S
    Ultrasound Med Biol; 2020 May; 46(5):1133-1141. PubMed ID: 32102739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiomics-based machine learning in the differentiation of benign and malignant bowel wall thickening radiomics in bowel wall thickening.
    Bülbül HM; Burakgazi G; Kesimal U; Kaba E
    Jpn J Radiol; 2024 Aug; 42(8):872-879. PubMed ID: 38536559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics.
    Mao B; Ma J; Duan S; Xia Y; Tao Y; Zhang L
    Eur Radiol; 2021 Jul; 31(7):4576-4586. PubMed ID: 33447862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of machine learning-based multi-sequence MRI radiomics in diagnosing anterior cruciate ligament tears.
    Cheng Q; Lin H; Zhao J; Lu X; Wang Q
    J Orthop Surg Res; 2024 Jan; 19(1):99. PubMed ID: 38297322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the HER-2 status of breast cancer using mammography radiomics features.
    Zhou J; Tan H; Bai Y; Li J; Lu Q; Chen R; Zhang M; Feng Q; Wang M
    Eur J Radiol; 2019 Dec; 121():108718. PubMed ID: 31711023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features.
    Yin P; Mao N; Zhao C; Wu J; Sun C; Chen L; Hong N
    Eur Radiol; 2019 Apr; 29(4):1841-1847. PubMed ID: 30280245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiphasic CT-Based Radiomics Analysis for the Differentiation of Benign and Malignant Parotid Tumors.
    Yu Q; Wang A; Gu J; Li Q; Ning Y; Peng J; Lv F; Zhang X
    Front Oncol; 2022; 12():913898. PubMed ID: 35847942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer.
    Li X; Li C; Wang H; Jiang L; Chen M
    PeerJ; 2024; 12():e17683. PubMed ID: 39026540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.