These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 3748156)

  • 21. Linkage between operator binding and dimer to octamer self-assembly of bacteriophage lambda cI repressor.
    Rusinova E; Ross JB; Laue TM; Sowers LC; Senear DF
    Biochemistry; 1997 Oct; 36(42):12994-3003. PubMed ID: 9335560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The spacing between binding sites controls the mode of cooperative DNA-protein interactions: implications for evolution of regulatory circuitry.
    Liu Z; Little JW
    J Mol Biol; 1998 May; 278(2):331-8. PubMed ID: 9571055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Histones H3 and H2a are homologous to the lambda repressor and cro proteins in 22 residue segments implicated in DNA binding.
    Magnus KA; Lattman EE
    Biochem Int; 1983 Nov; 7(5):557-68. PubMed ID: 6237652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cooperative DNA-protein interactions. Effects of changing the spacing between adjacent binding sites.
    Mao C; Carlson NG; Little JW
    J Mol Biol; 1994 Jan; 235(2):532-44. PubMed ID: 8289280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combined conformational search and finite-difference Poisson-Boltzmann approach for flexible docking. Application to an operator mutation in the lambda repressor-operator complex.
    Zacharias M; Luty BA; Davis ME; McCammon JA
    J Mol Biol; 1994 May; 238(3):455-65. PubMed ID: 8176736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increasing and decreasing protein stability: effects of revertant substitutions on the thermal denaturation of phage lambda repressor.
    Hecht MH; Hehir KM; Nelson HC; Sturtevant JM; Sauer RT
    J Cell Biochem; 1985; 29(3):217-24. PubMed ID: 4077930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Individual-site binding data and the energetics of protein-DNA interactions.
    Saroff HA
    Biopolymers; 1993 Sep; 33(9):1327-36. PubMed ID: 8400030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA sequence dependent and independent conformational changes in multipartite operator recognition by lambda-repressor.
    Deb S; Bandyopadhyay S; Roy S
    Biochemistry; 2000 Mar; 39(12):3377-83. PubMed ID: 10727231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of 3-D structure of the Cro protein from phage 434.
    Cygler M; Anderson WF
    J Biomol Struct Dyn; 1986 Jun; 3(6):1055-66. PubMed ID: 3271423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Four dimers of lambda repressor bound to two suitably spaced pairs of lambda operators form octamers and DNA loops over large distances.
    Révet B; von Wilcken-Bergmann B; Bessert H; Barker A; Müller-Hill B
    Curr Biol; 1999 Feb; 9(3):151-4. PubMed ID: 10021390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Definitive role of polar residue clusters in B-DNA major groove recognition by protein factors].
    Chirgadze IuN; Larionova EA
    Mol Biol (Mosk); 2003; 37(2):266-76. PubMed ID: 12723474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer-aided discrimination between active and inactive mutants of the N-terminal domain of the bacteriophage lambda repressor.
    Kombo DC; Némethy G; Gibson KD; Rackovsky S; Scheraga HA
    J Mol Biol; 1996 Mar; 256(3):517-32. PubMed ID: 8604135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A map of the biotin repressor-biotin operator interface: binding of a winged helix-turn-helix protein dimer to a forty base-pair site.
    Streaker ED; Beckett D
    J Mol Biol; 1998 May; 278(4):787-800. PubMed ID: 9614942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repression of transcription initiation at 434 P(R) by 434 repressor: effects on transition of a closed to an open promoter complex.
    Xu J; Koudelka GB
    J Mol Biol; 2001 Jun; 309(3):573-87. PubMed ID: 11397081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA-stimulated assembly of oligomeric bacteriophage 434 repressor: evidence for cooperative binding by recruitment.
    Ciubotaru M; Koudelka GB
    Biochemistry; 2003 Apr; 42(14):4253-64. PubMed ID: 12680780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA-mediated assembly of weakly interacting DNA-binding protein subunits: in vitro recruitment of phage 434 repressor and yeast GCN4 DNA-binding domains.
    Guarnaccia C; Raman B; Zahariev S; Simoncsits A; Pongor S
    Nucleic Acids Res; 2004; 32(17):4992-5002. PubMed ID: 15388801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nag repressor-operator interactions: protein-DNA contacts cover more than two turns of the DNA helix.
    Plumbridge J; Kolb A
    J Mol Biol; 1995 Jun; 249(5):890-902. PubMed ID: 7791215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of the lambda repressor C-terminal domain octamer.
    Bell CE; Lewis M
    J Mol Biol; 2001 Dec; 314(5):1127-36. PubMed ID: 11743728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diffusion-collision model for the folding kinetics of the lambda-repressor operator-binding domain.
    Bashford D; Weaver DL; Karplus M
    J Biomol Struct Dyn; 1984 Mar; 1(5):1243-55. PubMed ID: 6400820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.