These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37481695)

  • 61. Production of polyhydroxyalkanoates by the thermophile Cupriavidus cauae PHS1.
    An J; Ha B; Lee SK
    Bioresour Technol; 2023 Mar; 371():128627. PubMed ID: 36646360
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Model-Based Nutrient Feeding Strategies for the Increased Production of Polyhydroxybutyrate (PHB) by Alcaligenes latus.
    Gahlawat G; Srivastava AK
    Appl Biochem Biotechnol; 2017 Oct; 183(2):530-542. PubMed ID: 28455808
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bacteria from industrial waste: potential producers of polyhydroxyalkanoates (PHAs) in Manizales, Colombia.
    Giraldo-Montoya JM; Castaño-Villa GJ; Rivera-Páez FA
    Environ Monit Assess; 2020 Jul; 192(7):480. PubMed ID: 32617674
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Second-generation functionalized medium-chain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications.
    Tortajada M; da Silva LF; Prieto MA
    Int Microbiol; 2013 Mar; 16(1):1-15. PubMed ID: 24151777
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Microalgae in Bioplastic Production: A Comprehensive Review.
    Arora Y; Sharma S; Sharma V
    Arab J Sci Eng; 2023; 48(6):7225-7241. PubMed ID: 37266400
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microalgae as Contributors to Produce Biopolymers.
    Madadi R; Maljaee H; Serafim LS; Ventura SPM
    Mar Drugs; 2021 Aug; 19(8):. PubMed ID: 34436305
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization and Process Optimization for Enhanced Production of Polyhydroxybutyrate (PHB)-Based Biodegradable Polymer from
    Adnan M; Siddiqui AJ; Ashraf SA; Snoussi M; Badraoui R; Ibrahim AMM; Alreshidi M; Sachidanandan M; Patel M
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987188
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Use of a mannitol rich ensiled grass press juice (EGPJ) as a sole carbon source for polyhydroxyalkanoates (PHAs) production through high cell density cultivation.
    Cerrone F; Davis R; Kenny ST; Woods T; O'Donovan A; Gupta VK; Tuohy M; Babu RP; O'Kiely P; O'Connor K
    Bioresour Technol; 2015 Sep; 191():45-52. PubMed ID: 25978856
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Optimization of the phototrophic Cyanobacteria polyhydroxybutyrate (PHB) production by kinetic model simulation.
    Rueda E; García J
    Sci Total Environ; 2021 Dec; 800():149561. PubMed ID: 34426369
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Isolation of Two Bacterial Species from Argan Soil in Morocco Associated with Polyhydroxybutyrate (PHB) Accumulation: Current Potential and Future Prospects for the Bio-Based Polymer Production.
    Aragosa A; Specchia V; Frigione M
    Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34199961
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future.
    Palmeiro-Sánchez T; O'Flaherty V; Lens PNL
    J Biotechnol; 2022 Mar; 348():10-25. PubMed ID: 35298952
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bioprocess for co-production of polyhydroxybutyrate and violacein using Himalayan bacterium Iodobacter sp. PCH194.
    Kumar V; Darnal S; Kumar S; Kumar S; Singh D
    Bioresour Technol; 2021 Jan; 319():124235. PubMed ID: 33254459
    [TBL] [Abstract][Full Text] [Related]  

  • 73.
    Leadbeater DR; Bruce NC; Tonon T
    Microb Genom; 2022 Sep; 8(9):. PubMed ID: 36125959
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Polyhydroxybutyrate production by recombinant Escherichia coli based on genes related to synthesis pathway of PHB from Massilia sp. UMI-21.
    Jiang N; Wang M; Song L; Yu D; Zhou S; Li Y; Li H; Han X
    Microb Cell Fact; 2023 Jul; 22(1):129. PubMed ID: 37452345
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Trends and challenges in the valorization of kitchen waste to polyhydroxyalkanoates.
    Chavan S; Yadav B; Tyagi RD; Wong JWC; Drogui P
    Bioresour Technol; 2023 Feb; 369():128323. PubMed ID: 36400275
    [TBL] [Abstract][Full Text] [Related]  

  • 76. PHA bioplastics, biochemicals, and energy from crops.
    Somleva MN; Peoples OP; Snell KD
    Plant Biotechnol J; 2013 Feb; 11(2):233-52. PubMed ID: 23294864
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biopolymer production from biomass produced by Nordic microalgae grown in wastewater.
    Mehariya S; Plöhn M; Jablonski P; Stagge S; Jönsson LJ; Funk C
    Bioresour Technol; 2023 May; 376():128901. PubMed ID: 36931449
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Hyperproduction of Polyhydroxybutyrate Using
    Abdelmalek F; Steinbüchel A; Rofeal M
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890586
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Recent developments in the synthesis of poly(hydroxybutyrate) based biocomposites.
    Raza ZA; Noor S; Khalil S
    Biotechnol Prog; 2019 Sep; 35(5):e2855. PubMed ID: 31136087
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Rational engineering of natural polyhydroxyalkanoates producing microorganisms for improved synthesis and recovery.
    Borrero-de Acuña JM; Poblete-Castro I
    Microb Biotechnol; 2023 Feb; 16(2):262-285. PubMed ID: 35792877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.