BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37481729)

  • 1. FISH-Flow to quantify nascent and mature ribosomal RNA in mouse and human cells.
    Antony C; Somers P; Gray EM; Pimkin M; Paralkar VR
    STAR Protoc; 2023 Sep; 4(3):102463. PubMed ID: 37481729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of rDNA and 28S, 18S, and 5S rRNA in micronuclei containing a single chromosome.
    Labidi B; Broders F; Meyer JL; Hernandez-Verdun D
    Biochem Cell Biol; 1990 Jun; 68(6):957-64. PubMed ID: 2397099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol for comparing ribosomal levels in single bacterial cells at different growth stages using rRNA-FISH.
    Ciolli Mattioli C; Avraham R
    STAR Protoc; 2024 Jun; 5(3):103137. PubMed ID: 38878285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive detection of RNAs in single cells by flow cytometry.
    Yu H; Ernst L; Wagner M; Waggoner A
    Nucleic Acids Res; 1992 Jan; 20(1):83-8. PubMed ID: 1738608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting RNA-protein proximity at DNA double-strand breaks using combined fluorescence in situ hybridization with proximity ligation assay.
    Alagia A; Ketley RF; Gullerova M
    STAR Protoc; 2023 Mar; 4(1):102096. PubMed ID: 36825808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of virus-infected cells using RNA FISH-Flow.
    Warren CJ; Barbachano-Guerrero A; Huey D; Yang Q; Worden-Sapper ER; Kuhn JH; Sawyer SL
    STAR Protoc; 2023 May; 4(2):102291. PubMed ID: 37209094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow cytometric measurement of rRNA levels detected by fluorescent in situ hybridization in differentiating K-562 cells.
    Pajor L; Bauman JG
    Histochemistry; 1991; 96(1):73-81. PubMed ID: 1938484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-temperature fluorescent in situ hybridization for detecting Escherichia coli in seawater samples, using rRNA-targeted oligonucleotide probes and flow cytometry.
    Tang YZ; Gin KY; Lim TH
    Appl Environ Microbiol; 2005 Dec; 71(12):8157-64. PubMed ID: 16332798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of 18S + 28S and 5S ribosomal RNA genes in the dog by fluorescence in situ hybridization.
    Mäkinen A; Zijlstra C; de Haan NA; Mellink CH; Bosma AA
    Cytogenet Cell Genet; 1997; 78(3-4):231-5. PubMed ID: 9465895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosomal ribonucleic acid is transcribed at the 4-cell stage in in vitro-produced bovine embryos.
    Viuff D; Hyttel P; Avery B; Vajta G; Greve T; Callesen H; Thomsen PD
    Biol Reprod; 1998 Sep; 59(3):626-31. PubMed ID: 9716563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol to detect RNAs from tissue sections in mice using Y-branched probe in situ hybridization.
    Wu Y; Yu CR
    STAR Protoc; 2022 Dec; 3(4):101686. PubMed ID: 36115025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized protocol for single-molecule RNA FISH to visualize gene expression in
    Patel HP; Brouwer I; Lenstra TL
    STAR Protoc; 2021 Sep; 2(3):100647. PubMed ID: 34278333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5. 8S RRNA processing and 60S ribosome biogenesis.
    Strezoska Z; Pestov DG; Lau LF
    Mol Cell Biol; 2000 Aug; 20(15):5516-28. PubMed ID: 10891491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Introduction to Fluorescence in situ Hybridization in Microorganisms.
    Almeida C; Azevedo NF
    Methods Mol Biol; 2021; 2246():1-15. PubMed ID: 33576979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution microscopy of active ribosomal genes and key members of the rRNA processing machinery inside nucleolus-like bodies of fully-grown mouse oocytes.
    Shishova KV; Khodarovich YM; Lavrentyeva EA; Zatsepina OV
    Exp Cell Res; 2015 Oct; 337(2):208-18. PubMed ID: 26226217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient RNA and RNA-protein co-detection in 3D colonoids by whole-mount staining.
    Atanga R; Parra AS; In JG
    STAR Protoc; 2022 Dec; 3(4):101775. PubMed ID: 36313534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FISH mapping of 18S-28S and 5S ribosomal DNA, (GATA)n and (TTAGGG)n telomeric repeats in the periwinkle Melarhaphe neritoides (Prosobranchia, Gastropoda, Caenogastropoda).
    Colomba MS; Vitturi R; Castriota L; Bertoni R; Libertini A
    Heredity (Edinb); 2002 May; 88(5):381-4. PubMed ID: 11986875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of 5S and 18S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors.
    Hanson RE; Islam-Faridi MN; Percival EA; Crane CF; Ji Y; McKnight TD; Stelly DM; Price HJ
    Chromosoma; 1996 Jul; 105(1):55-61. PubMed ID: 8662259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosomal mapping of 18S-28S rRNA genes and 10 cDNA clones of human chromosome 1 in the musk shrew (Suncus murinus).
    Kuroiwa A; Matsubara K; Nagase T; Nomura N; Seong JK; Ishikawa A; Anunciado RV; Tanaka K; Yamagata T; Masangkay JS; Dang VB; Namikawa T; Matsuda Y
    J Hered; 2001; 92(3):282-7. PubMed ID: 11447248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing of truncated mouse or human rRNA transcribed from ribosomal minigenes transfected into mouse cells.
    Hadjiolova KV; Normann A; Cavaillé J; Soupène E; Mazan S; Hadjiolov AA; Bachellerie JP
    Mol Cell Biol; 1994 Jun; 14(6):4044-56. PubMed ID: 8196643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.