These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37481729)

  • 21. X-FISH: Analysis of cellular RNA expression patterns using flow cytometry.
    Rieger AM; Havixbeck JJ; Barreda DR
    J Immunol Methods; 2015 Aug; 423():111-9. PubMed ID: 25997675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of the ribosomal RNA genes late in the third cell cycle of porcine embryos.
    Viuff D; Greve T; Holm P; Callesen H; Hyttel P; Thomsen PD
    Biol Reprod; 2002 Mar; 66(3):629-34. PubMed ID: 11870068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repetitive DNAs in the slug Milax nigricans: association of ribosomal (18S-28S and 5S rDNA) and (TTAGGG)n telomeric sequences in the slug M. nigricans (Mollusca: Gastropoda: Pulmonata).
    Vitturi R; Sineo L; Volpe N; Lannino A; Colomba M
    Micron; 2004; 35(4):255-60. PubMed ID: 15003612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protocol to detect infectious SARS-CoV-2 at low levels using in situ hybridization techniques.
    Cottignies-Calamarte A; He F; Zhu A; Real F; Bomsel M
    STAR Protoc; 2023 Dec; 4(4):102593. PubMed ID: 37738115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 5'ETS rRNA processing facilitated by four small RNAs: U14, E3, U17, and U3.
    Enright CA; Maxwell ES; Eliceiri GL; Sollner-Webb B
    RNA; 1996 Nov; 2(11):1094-9. PubMed ID: 8903340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular coevolution among cryptically simple expansion segments of eukaryotic 26S/28S rRNAs.
    Hancock JM; Dover GA
    Mol Biol Evol; 1988 Jul; 5(4):377-91. PubMed ID: 3405077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of fibre-FISH (fluorescence in situ hybridization) to filamentous fungi: visualization of the rRNA gene cluster of the ascomycete Cochliobolus heterostrophus.
    Tsuchiya D; Taga M
    Microbiology (Reading); 2001 May; 147(Pt 5):1183-1187. PubMed ID: 11320121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and organization of ribosomal DNA.
    Srivastava AK; Schlessinger D
    Biochimie; 1991 Jun; 73(6):631-8. PubMed ID: 1764510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localization of the genes for major ribosomal RNA on chromosomes of the house musk shrew, Suncus murinus, at meiotic and mitotic cells by fluorescence in situ hybridization and silver staining.
    Rogatcheva MB; Serdyukova NA; Biltueva LS; Perelman PL; Borodin PM; Oda S; Graphodatsky AS
    Genes Genet Syst; 1997 Aug; 72(4):215-8. PubMed ID: 9418261
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protocol for preparation and staining of chromosomes isolated from mouse and human tissues for conventional and molecular cytogenetic analysis.
    Binz RL; Burns K; Pathak R
    STAR Protoc; 2024 Mar; 5(1):102897. PubMed ID: 38373079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional reconstruction of pericentromeric (1q12) DNA and ribosomal RNA sequences in HL60 cells after double-target in situ hybridization and confocal microscopy.
    van Dekken H; van der Voort HT; Brakenhoff GJ; Bauman JG
    Cytometry; 1990; 11(5):579-85. PubMed ID: 2379448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility.
    Stoecker K; Dorninger C; Daims H; Wagner M
    Appl Environ Microbiol; 2010 Feb; 76(3):922-6. PubMed ID: 19966029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of Aequipecten opercularis (Bivalvia: Pectinidae) chromosomes by different staining techniques and fluorescent in situ hybridization.
    Insua A; López-Piñón MJ; Méndez J
    Genes Genet Syst; 1998 Aug; 73(4):193-200. PubMed ID: 9880917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. exo-FISH: Protocol for detecting DNA breaks in repetitive regions of mammalian genomes.
    Saayman X; Graham E; Leung CWB; Esashi F
    STAR Protoc; 2023 Sep; 4(3):102487. PubMed ID: 37549036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protocol to image and quantify nucleocytoplasmic transport in cultured cells using fluorescent
    Cui H; Sepehrimanesh M; Coutee CA; Akter M; Hosain MA; Ding B
    STAR Protoc; 2022 Dec; 3(4):101813. PubMed ID: 36386872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ hybridization in living cells: detection of RNA molecules.
    Paillasson S; Van De Corput M; Dirks RW; Tanke HJ; Robert-Nicoud M; Ronot X
    Exp Cell Res; 1997 Feb; 231(1):226-33. PubMed ID: 9056430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleolar organization of HeLa cells as studied by in situ hybridization.
    Puvion-Dutilleul F; Bachellerie JP; Puvion E
    Chromosoma; 1991 Jul; 100(6):395-409. PubMed ID: 1893795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Localization of DNA probes for human ribosomal genes on barley chromosomes].
    Muravenko OV; Badaeva ED; Amosova AV; Shostak NG; Popov KV; Zelenin AV
    Genetika; 2001 Dec; 37(12):1721-4. PubMed ID: 11785302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for involvement of NFBP in processing of ribosomal RNA.
    Sweet T; Yen W; Khalili K; Amini S
    J Cell Physiol; 2008 Feb; 214(2):381-8. PubMed ID: 17654514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ detection of freshwater fungi in an alpine stream by new taxon-specific fluorescence in situ hybridization probes.
    Baschien C; Manz W; Neu TR; Marvanová L; Szewzyk U
    Appl Environ Microbiol; 2008 Oct; 74(20):6427-36. PubMed ID: 18776035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.