These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37482004)
1. Integrated numerical modeling to quantify transport and fate of microplastics in the hyporheic zone. Dichgans F; Boos JP; Ahmadi P; Frei S; Fleckenstein JH Water Res; 2023 Sep; 243():120349. PubMed ID: 37482004 [TBL] [Abstract][Full Text] [Related]
2. Effects of near-bed turbulence on microplastics fate and transport in streams. Yang H; Foroutan H Sci Total Environ; 2023 Dec; 905():167173. PubMed ID: 37730059 [TBL] [Abstract][Full Text] [Related]
3. Occurence of microplastics in the hyporheic zone of rivers. Frei S; Piehl S; Gilfedder BS; Löder MGJ; Krutzke J; Wilhelm L; Laforsch C Sci Rep; 2019 Oct; 9(1):15256. PubMed ID: 31649312 [TBL] [Abstract][Full Text] [Related]
4. Exploring the influence of sediment motion on microplastic deposition in streambeds. Peleg E; Teitelbaum Y; Arnon S Water Res; 2024 Feb; 249():120952. PubMed ID: 38101045 [TBL] [Abstract][Full Text] [Related]
5. Presence of polyethylene terephthalate (PET) fibers in hyporheic zone alters colonization patterns and seasonal dynamics of biofilm metabolic functioning. Matjašič T; Simčič T; Kanduč T; Samardžija Z; Mori N Water Res; 2021 Sep; 203():117455. PubMed ID: 34375931 [TBL] [Abstract][Full Text] [Related]
6. Visualizing Hyporheic Flow Through Bedforms Using Dye Experiments and Simulation. Stonedahl SH; Roche KR; Stonedahl F; Packman AI J Vis Exp; 2015 Nov; (105):. PubMed ID: 26651065 [TBL] [Abstract][Full Text] [Related]
7. Convergence of Groundwater Discharge through the Hyporheic Zone of Streams. Mojarrad BB; Wörman A; Riml J; Xu S Ground Water; 2023 Jan; 61(1):66-85. PubMed ID: 35984214 [TBL] [Abstract][Full Text] [Related]
8. A numerical framework for modeling fate and transport of microplastics in inland and coastal waters. Pilechi A; Mohammadian A; Murphy E Mar Pollut Bull; 2022 Nov; 184():114119. PubMed ID: 36162292 [TBL] [Abstract][Full Text] [Related]
9. Quantifying the influence of size, shape, and density of microplastics on their transport modes: A modeling approach. Huang Y; Yang Z; Wang T; Sun N; Duan Z; Wigmosta M; Maurer B Mar Pollut Bull; 2024 Jun; 203():116461. PubMed ID: 38754320 [TBL] [Abstract][Full Text] [Related]
10. Influence of the In-Stream Structure on Solute Transport in the Hyporheic Zone. Li H; Liu Y; Feng J; Liu D; Li Y; Chen L; Xiao J Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627401 [TBL] [Abstract][Full Text] [Related]
11. Determination of Microplastics' Vertical Concentration Transport (Rouse) Profiles in Flumes. Born MP; Brüll C; Schaefer D; Hillebrand G; Schüttrumpf H Environ Sci Technol; 2023 Apr; 57(14):5569-5579. PubMed ID: 36976958 [TBL] [Abstract][Full Text] [Related]
12. Factors influencing streambed hydraulic conductivity and their implications on stream-aquifer interaction: a conceptual review. Naganna SR; Deka PC; Ch S; Hansen WF Environ Sci Pollut Res Int; 2017 Nov; 24(32):24765-24789. PubMed ID: 28988330 [TBL] [Abstract][Full Text] [Related]
13. Hydrodynamic modelling of traffic-related microplastics discharged with stormwater into the Göta River in Sweden. Bondelind M; Sokolova E; Nguyen A; Karlsson D; Karlsson A; Björklund K Environ Sci Pollut Res Int; 2020 Jul; 27(19):24218-24230. PubMed ID: 32306266 [TBL] [Abstract][Full Text] [Related]
14. Dispersal and transport of microplastics in river sediments. He B; Smith M; Egodawatta P; Ayoko GA; Rintoul L; Goonetilleke A Environ Pollut; 2021 Jun; 279():116884. PubMed ID: 33743439 [TBL] [Abstract][Full Text] [Related]
15. Distribution and transport of microplastic and fine particulate organic matter in urban streams. Vincent AES; Hoellein TJ Ecol Appl; 2021 Dec; 31(8):e02429. PubMed ID: 34309960 [TBL] [Abstract][Full Text] [Related]
16. Microplastic Pollution in Benthic Midstream Sediments of the Rhine River. Mani T; Primpke S; Lorenz C; Gerdts G; Burkhardt-Holm P Environ Sci Technol; 2019 May; 53(10):6053-6062. PubMed ID: 31021624 [TBL] [Abstract][Full Text] [Related]
17. Deposition and in-situ translocation of microplastics in floodplain soils. Weber CJ; Opp C; Prume JA; Koch M; Andersen TJ; Chifflard P Sci Total Environ; 2022 May; 819():152039. PubMed ID: 34856256 [TBL] [Abstract][Full Text] [Related]
18. The influence of streambed heterogeneity on hyporheic flow in gravelly rivers. Zhou Y; Ritzi RW; Soltanian MR; Dominic DF Ground Water; 2014; 52(2):206-16. PubMed ID: 23574542 [TBL] [Abstract][Full Text] [Related]
19. Preferential accumulation of small (<300 μm) microplastics in the sediments of a coastal plain river network in eastern China. Wang Z; Su B; Xu X; Di D; Huang H; Mei K; Dahlgren RA; Zhang M; Shang X Water Res; 2018 Nov; 144():393-401. PubMed ID: 30056323 [TBL] [Abstract][Full Text] [Related]
20. The fate of microplastic in marine sedimentary environments: A review and synthesis. Harris PT Mar Pollut Bull; 2020 Sep; 158():111398. PubMed ID: 32753183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]