These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 37482021)
21. Multiscale Simulations of the Covalent Inhibition of the SARS-CoV-2 Main Protease: Four Compounds and Three Reaction Mechanisms. Grigorenko BL; Polyakov IV; Khrenova MG; Giudetti G; Faraji S; Krylov AI; Nemukhin AV J Am Chem Soc; 2023 Jun; 145(24):13204-13214. PubMed ID: 37294056 [TBL] [Abstract][Full Text] [Related]
22. Alkyne Derivatives of SARS-CoV-2 Main Protease Inhibitors Including Nirmatrelvir Inhibit by Reacting Covalently with the Nucleophilic Cysteine. Brewitz L; Dumjahn L; Zhao Y; Owen CD; Laidlaw SM; Malla TR; Nguyen D; Lukacik P; Salah E; Crawshaw AD; Warren AJ; Trincao J; Strain-Damerell C; Carroll MW; Walsh MA; Schofield CJ J Med Chem; 2023 Feb; 66(4):2663-2680. PubMed ID: 36757959 [TBL] [Abstract][Full Text] [Related]
23. [Nirmatrelvir plus ritonavir (Paxlovid) a potent SARS-CoV-2 3CLpro protease inhibitor combination]. Reina J; Iglesias C Rev Esp Quimioter; 2022 Jun; 35(3):236-240. PubMed ID: 35183067 [TBL] [Abstract][Full Text] [Related]
24. Discovery and structure-activity relationship studies of novel α-ketoamide derivatives targeting the SARS-CoV-2 main protease. Huang C; Zeng R; Qiao J; Quan B; Luo R; Huang Q; Guo N; Li Y; Long X; Ma R; Xia A; Fang Z; Wang Y; Li Y; Zheng Y; Li L; Lei J; Yang S Eur J Med Chem; 2023 Nov; 259():115657. PubMed ID: 37517202 [TBL] [Abstract][Full Text] [Related]
25. Discovery of Chlorofluoroacetamide-Based Covalent Inhibitors for Severe Acute Respiratory Syndrome Coronavirus 2 3CL Protease. Hirose Y; Shindo N; Mori M; Onitsuka S; Isogai H; Hamada R; Hiramoto T; Ochi J; Takahashi D; Ueda T; Caaveiro JMM; Yoshida Y; Ohdo S; Matsunaga N; Toba S; Sasaki M; Orba Y; Sawa H; Sato A; Kawanishi E; Ojida A J Med Chem; 2022 Oct; 65(20):13852-13865. PubMed ID: 36229406 [TBL] [Abstract][Full Text] [Related]
26. In Silico Drug Repositioning to Target the SARS-CoV-2 Main Protease as Covalent Inhibitors Employing a Combined Structure-Based Virtual Screening Strategy of Pharmacophore Models and Covalent Docking. Vázquez-Mendoza LH; Mendoza-Figueroa HL; García-Vázquez JB; Correa-Basurto J; García-Machorro J Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409348 [TBL] [Abstract][Full Text] [Related]
27. Discovery of quinazolin-4-one-based non-covalent inhibitors targeting the severe acute respiratory syndrome coronavirus 2 main protease (SARS-CoV-2 M Zhang K; Wang T; Li M; Liu M; Tang H; Wang L; Ye K; Yang J; Jiang S; Xiao Y; Xie Y; Lu M; Zhang X Eur J Med Chem; 2023 Sep; 257():115487. PubMed ID: 37257212 [TBL] [Abstract][Full Text] [Related]
28. Identification of Aloe-derived natural products as prospective lead scaffolds for SARS-CoV-2 main protease (M Hicks EG; Kandel SE; Lampe JN Bioorg Med Chem Lett; 2022 Jun; 66():128732. PubMed ID: 35427739 [TBL] [Abstract][Full Text] [Related]
29. Discovery and Mechanism Study of SARS-CoV-2 3C-like Protease Inhibitors with a New Reactive Group. Ren P; Li H; Nie T; Jian X; Yu C; Li J; Su H; Zhang X; Li S; Yang X; Peng C; Yin Y; Zhang L; Xu Y; Liu H; Bai F J Med Chem; 2023 Sep; 66(17):12266-12283. PubMed ID: 37594952 [TBL] [Abstract][Full Text] [Related]
30. Alkyne as a Latent Warhead to Covalently Target SARS-CoV-2 Main Protease. Ngo C; Fried W; Aliyari S; Feng J; Qin C; Zhang S; Yang H; Shanaa J; Feng P; Cheng G; Chen XS; Zhang C J Med Chem; 2023 Sep; 66(17):12237-12248. PubMed ID: 37595260 [TBL] [Abstract][Full Text] [Related]
32. A multi-pronged evaluation of aldehyde-based tripeptidyl main protease inhibitors as SARS-CoV-2 antivirals. Ma Y; Yang KS; Geng ZZ; Alugubelli YR; Shaabani N; Vatansever EC; Ma XR; Cho CC; Khatua K; Xiao J; Blankenship LR; Yu G; Sankaran B; Li P; Allen R; Ji H; Xu S; Liu WR Eur J Med Chem; 2022 Oct; 240():114570. PubMed ID: 35779291 [TBL] [Abstract][Full Text] [Related]
33. Discovery of Di- and Trihaloacetamides as Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity. Ma C; Xia Z; Sacco MD; Hu Y; Townsend JA; Meng X; Choza J; Tan H; Jang J; Gongora MV; Zhang X; Zhang F; Xiang Y; Marty MT; Chen Y; Wang J J Am Chem Soc; 2021 Dec; 143(49):20697-20709. PubMed ID: 34860011 [TBL] [Abstract][Full Text] [Related]
34. The research progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022. Pang X; Xu W; Liu Y; Li H; Chen L Eur J Med Chem; 2023 Sep; 257():115491. PubMed ID: 37244162 [TBL] [Abstract][Full Text] [Related]
35. In Silico Comparative Analysis of Ivermectin and Nirmatrelvir Inhibitors Interacting with the SARS-CoV-2 Main Protease. de Oliveira Só YA; Bezerra KS; Gargano R; Mendonça FLL; Souto JT; Fulco UL; Pereira Junior ML; Junior LAR Biomolecules; 2024 Jun; 14(7):. PubMed ID: 39062468 [TBL] [Abstract][Full Text] [Related]
36. Targeting the Main Protease of SARS-CoV-2: From the Establishment of High Throughput Screening to the Design of Tailored Inhibitors. Breidenbach J; Lemke C; Pillaiyar T; Schäkel L; Al Hamwi G; Diett M; Gedschold R; Geiger N; Lopez V; Mirza S; Namasivayam V; Schiedel AC; Sylvester K; Thimm D; Vielmuth C; Phuong Vu L; Zyulina M; Bodem J; Gütschow M; Müller CE Angew Chem Int Ed Engl; 2021 Apr; 60(18):10423-10429. PubMed ID: 33655614 [TBL] [Abstract][Full Text] [Related]
37. Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Su H; Yao S; Zhao W; Zhang Y; Liu J; Shao Q; Wang Q; Li M; Xie H; Shang W; Ke C; Feng L; Jiang X; Shen J; Xiao G; Jiang H; Zhang L; Ye Y; Xu Y Nat Commun; 2021 Jun; 12(1):3623. PubMed ID: 34131140 [TBL] [Abstract][Full Text] [Related]