These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37482146)

  • 21. pH-responsive UV crosslinkable chitosan hydrogel via "thiol-ene" click chemistry for active modulating opposite drug release behaviors.
    Ding H; Li B; Jiang Y; Liu G; Pu S; Feng Y; Jia D; Zhou Y
    Carbohydr Polym; 2021 Jan; 251():117101. PubMed ID: 33142639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 'Smart' delivery systems for biomolecular therapeutics.
    Stayton PS; El-Sayed ME; Murthy N; Bulmus V; Lackey C; Cheung C; Hoffman AS
    Orthod Craniofac Res; 2005 Aug; 8(3):219-25. PubMed ID: 16022724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel porous scaffolds of pH responsive chitosan/carrageenan-based polyelectrolyte complexes for tissue engineering.
    Araujo JV; Davidenko N; Danner M; Cameron RE; Best SM
    J Biomed Mater Res A; 2014 Dec; 102(12):4415-26. PubMed ID: 24677767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing.
    Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM
    Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pH-responsive scaffolds generate a pro-healing response.
    You JO; Rafat M; Almeda D; Maldonado N; Guo P; Nabzdyk CS; Chun M; LoGerfo FW; Hutchinson JW; Pradhan-Nabzdyk LK; Auguste DT
    Biomaterials; 2015 Jul; 57():22-32. PubMed ID: 25956194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supercritical CO
    Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E
    Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment.
    Gulati K; Meher MK; Poluri KM
    Regen Med; 2017 Apr; 12(4):431-457. PubMed ID: 28621207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioresponsive supramolecular hydrogels for hemostasis, infection control and accelerated dermal wound healing.
    Preman NK; E S SP; Prabhu A; Shaikh SB; C V; Barki RR; Bhandary YP; Rekha PD; Johnson RP
    J Mater Chem B; 2020 Sep; 8(37):8585-8598. PubMed ID: 32820296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells.
    Ko E; Yang K; Shin J; Cho SW
    Biomacromolecules; 2013 Sep; 14(9):3202-13. PubMed ID: 23941596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of natural polymers in bone tissue engineering.
    Guo L; Liang Z; Yang L; Du W; Yu T; Tang H; Li C; Qiu H
    J Control Release; 2021 Oct; 338():571-582. PubMed ID: 34481026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural Polymer-Based Micronanostructured Scaffolds for Bone Tissue Engineering.
    Katebifar S; Jaiswal D; Arul MR; Novak S; Nip J; Kalajzic I; Rudraiah S; Kumbar SG
    Methods Mol Biol; 2022; 2394():669-691. PubMed ID: 35094352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. "Click" chemistry in polymeric scaffolds: Bioactive materials for tissue engineering.
    Zou Y; Zhang L; Yang L; Zhu F; Ding M; Lin F; Wang Z; Li Y
    J Control Release; 2018 Mar; 273():160-179. PubMed ID: 29382547
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conducting Polymers for Tissue Engineering.
    Guo B; Ma PX
    Biomacromolecules; 2018 Jun; 19(6):1764-1782. PubMed ID: 29684268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural Polymer-Cell Bioconstructs for Bone Tissue Engineering.
    Titorencu I; Albu MG; Nemecz M; Jinga VV
    Curr Stem Cell Res Ther; 2017; 12(2):165-174. PubMed ID: 26521973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue-engineering-based strategies for regenerative endodontics.
    Albuquerque MT; Valera MC; Nakashima M; Nör JE; Bottino MC
    J Dent Res; 2014 Dec; 93(12):1222-31. PubMed ID: 25201917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polymeric 3D scaffolds for tissue regeneration: Evaluation of biopolymer nanocomposite reinforced with cellulose nanofibrils.
    Campodoni E; Heggset EB; Rashad A; Ramírez-Rodríguez GB; Mustafa K; Syverud K; Tampieri A; Sandri M
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():867-878. PubMed ID: 30423774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.