These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37482271)

  • 1. Identification of gravity-responsive proteins in the femur of spaceflight mice using a quantitative proteomic approach.
    Egashira K; Ino Y; Nakai Y; Ohira T; Akiyama T; Moriyama K; Yamamoto Y; Kimura M; Ryo A; Saito T; Inaba Y; Hirano H; Kumagai K; Kimura Y
    J Proteomics; 2023 Sep; 288():104976. PubMed ID: 37482271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of gravity-responsive serum proteins in spaceflight mice using a quantitative proteomic approach with data-independent acquisition mass spectrometry.
    Kimura Y; Nakai Y; Ino Y; Akiyama T; Moriyama K; Ohira T; Saito T; Inaba Y; Kumagai K; Ryo A; Hirano H
    Proteomics; 2024 May; 24(9):e2300214. PubMed ID: 38475964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Spaceflight and Artificial Gravity on the Mouse Retina: Biochemical and Proteomic Analysis.
    Mao XW; Byrum S; Nishiyama NC; Pecaut MJ; Sridharan V; Boerma M; Tackett AJ; Shiba D; Shirakawa M; Takahashi S; Delp MD
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30154332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the astronaut serum proteome during prolonged spaceflight.
    Kimura Y; Nakai Y; Ino Y; Akiyama T; Moriyama K; Aiba T; Ohira T; Egashira K; Yamamoto Y; Takeda Y; Inaba Y; Ryo A; Saito T; Kumagai K; Hirano H
    Proteomics; 2024 May; 24(10):e2300328. PubMed ID: 38185763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Meta-Analysis of the Proteomic Responses of Arabidopsis Seedlings to the Spaceflight Environment Reveals Multi-Dimensional Sources of Variability across Spaceflight Experiments.
    Olanrewaju GO; Kruse CPS; Wyatt SE
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of microgravity on osteoblast growth.
    Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V
    Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forces associated with launch into space do not impact bone fracture healing.
    Childress P; Brinker A; Gong CS; Harris J; Olivos DJ; Rytlewski JD; Scofield DC; Choi SY; Shirazi-Fard Y; McKinley TO; Chu TG; Conley CL; Chakraborty N; Hammamieh R; Kacena MA
    Life Sci Space Res (Amst); 2018 Feb; 16():52-62. PubMed ID: 29475520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment.
    Rea G; Cristofaro F; Pani G; Pascucci B; Ghuge SA; Corsetto PA; Imbriani M; Visai L; Rizzo AM
    J Proteomics; 2016 Mar; 137():3-18. PubMed ID: 26571091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of new experimental platform 'MARS'-Multiple Artificial-gravity Research System-to elucidate the impacts of micro/partial gravity on mice.
    Shiba D; Mizuno H; Yumoto A; Shimomura M; Kobayashi H; Morita H; Shimbo M; Hamada M; Kudo T; Shinohara M; Asahara H; Shirakawa M; Takahashi S
    Sci Rep; 2017 Sep; 7(1):10837. PubMed ID: 28883615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spaceflight bioreactor studies of cells and tissues.
    Freed LE; Vunjak-Novakovic G
    Adv Space Biol Med; 2002; 8():177-95. PubMed ID: 12951697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight.
    Lang TF; Leblanc AD; Evans HJ; Lu Y
    J Bone Miner Res; 2006 Aug; 21(8):1224-30. PubMed ID: 16869720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spaceflight induces oxidative damage to blood-brain barrier integrity in a mouse model.
    Mao XW; Nishiyama NC; Byrum SD; Stanbouly S; Jones T; Holley J; Sridharan V; Boerma M; Tackett AJ; Willey JS; Pecaut MJ; Delp MD
    FASEB J; 2020 Nov; 34(11):15516-15530. PubMed ID: 32981077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of microgravity on morphology and gene expression of osteoblasts in vitro.
    Carmeliet G; Bouillon R
    FASEB J; 1999; 13 Suppl():S129-34. PubMed ID: 10352154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spaceflight and hindlimb suspension disuse models in mice.
    Milstead JR; Simske SJ; Bateman TA
    Biomed Sci Instrum; 2004; 40():105-10. PubMed ID: 15133943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spaceflight induces specific alterations in the proteomes of Arabidopsis.
    Ferl RJ; Koh J; Denison F; Paul AL
    Astrobiology; 2015 Jan; 15(1):32-56. PubMed ID: 25517942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of spaceflight and artificial gravity on sulfur metabolism in mouse liver: sulfur metabolomic and transcriptomic analysis.
    Kurosawa R; Sugimoto R; Imai H; Atsuji K; Yamada K; Kawano Y; Ohtsu I; Suzuki K
    Sci Rep; 2021 Nov; 11(1):21786. PubMed ID: 34750416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative proteomic analysis of cortex in the depressive-like behavior of rats induced by the simulated complex space environment.
    Min R; Chen Z; Wang Y; Deng Z; Zhang Y; Deng Y
    J Proteomics; 2021 Apr; 237():104144. PubMed ID: 33581354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana.
    Zupanska AK; Denison FC; Ferl RJ; Paul AL
    Am J Bot; 2013 Jan; 100(1):235-48. PubMed ID: 23258370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsome-associated proteome modifications of Arabidopsis seedlings grown on board the International Space Station reveal the possible effect on plants of space stresses other than microgravity.
    Mazars C; Brière C; Grat S; Pichereaux C; Rossignol M; Pereda-Loth V; Eche B; Boucheron-Dubuisson E; Le Disquet I; Medina FJ; Graziana A; Carnero-Diaz E
    Plant Signal Behav; 2014; 9(9):e29637. PubMed ID: 25763699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic Analysis of Mouse Brain Subjected to Spaceflight.
    Mao XW; Sandberg LB; Gridley DS; Herrmann EC; Zhang G; Raghavan R; Zubarev RA; Zhang B; Stodieck LS; Ferguson VL; Bateman TA; Pecaut MJ
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30577490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.