BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37482278)

  • 1. Acidosis attenuates CPT-I-supported bioenergetics as a potential mechanism limiting lipid oxidation.
    Frangos SM; DesOrmeaux GJ; Holloway GP
    J Biol Chem; 2023 Sep; 299(9):105079. PubMed ID: 37482278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling skeletal muscle CPT-I malonyl-CoA sensitivity: the importance of AMPK-independent regulation of intermediate filaments during exercise.
    Miotto PM; Steinberg GR; Holloway GP
    Biochem J; 2017 Feb; 474(4):557-569. PubMed ID: 27941154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High intensity exercise inhibits carnitine palmitoyltransferase-I sensitivity to l-carnitine.
    Petrick HL; Holloway GP
    Biochem J; 2019 Feb; 476(3):547-558. PubMed ID: 30635360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of fat metabolism in skeletal muscle.
    Jeukendrup AE
    Ann N Y Acad Sci; 2002 Jun; 967():217-35. PubMed ID: 12079850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of CPT I activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle.
    Bezaire V; Heigenhauser GJ; Spriet LL
    Am J Physiol Endocrinol Metab; 2004 Jan; 286(1):E85-91. PubMed ID: 12954596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial-derived reactive oxygen species influence ADP sensitivity, but not CPT-I substrate sensitivity.
    Barbeau PA; Miotto PM; Holloway GP
    Biochem J; 2018 Sep; 475(18):2997-3008. PubMed ID: 30111574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carnitine palmitoyltransferase I (CPT I) activity and its regulation by malonyl-CoA are modulated by age and cold exposure in skeletal muscle mitochondria from newborn pigs.
    Schmidt I; Herpin P
    J Nutr; 1998 May; 128(5):886-93. PubMed ID: 9566999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a novel malonyl-CoA IC(50) for CPT-I: implications for predicting in vivo fatty acid oxidation rates.
    Smith BK; Perry CG; Koves TR; Wright DC; Smith JC; Neufer PD; Muoio DM; Holloway GP
    Biochem J; 2012 Nov; 448(1):13-20. PubMed ID: 22928974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations to mitochondrial fatty-acid use in skeletal muscle after chronic exposure to hypoxia depend on metabolic phenotype.
    Malgoyre A; Chabert C; Tonini J; Koulmann N; Bigard X; Sanchez H
    J Appl Physiol (1985); 2017 Mar; 122(3):666-674. PubMed ID: 28035013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise.
    Holloway GP; Bezaire V; Heigenhauser GJ; Tandon NN; Glatz JF; Luiken JJ; Bonen A; Spriet LL
    J Physiol; 2006 Feb; 571(Pt 1):201-10. PubMed ID: 16357012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of carnitine palmitoyltransferase I in skeletal muscle in vivo increases fatty acid oxidation and reduces triacylglycerol esterification.
    Bruce CR; Brolin C; Turner N; Cleasby ME; van der Leij FR; Cooney GJ; Kraegen EW
    Am J Physiol Endocrinol Metab; 2007 Apr; 292(4):E1231-7. PubMed ID: 17179390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute insulin deprivation results in altered mitochondrial substrate sensitivity conducive to greater fatty acid transport.
    Miotto PM; Petrick HL; Holloway GP
    Am J Physiol Endocrinol Metab; 2020 Aug; 319(2):E345-E353. PubMed ID: 32543943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carnitine in Human Muscle Bioenergetics: Can Carnitine Supplementation Improve Physical Exercise?
    Gnoni A; Longo S; Gnoni GV; Giudetti AM
    Molecules; 2020 Jan; 25(1):. PubMed ID: 31906370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carnitine and carnitine palmitoyltransferase in fatty acid oxidation and ketosis.
    Hoppel CL
    Fed Proc; 1982 Oct; 41(12):2853-7. PubMed ID: 7128831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of lipid oxidation during exercise: role of energy state and mitochondrial factors.
    Sahlin K; Harris RC
    Acta Physiol (Oxf); 2008 Dec; 194(4):283-91. PubMed ID: 18557841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of carnitine palmitoyltransferase (CPT) I during fasting in rainbow trout (Oncorhynchus mykiss) promotes increased mitochondrial fatty acid oxidation.
    Morash AJ; McClelland GB
    Physiol Biochem Zool; 2011; 84(6):625-33. PubMed ID: 22030855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle Carnitine Palmitoyltransferase II (CPT II) Deficiency: A Conceptual Approach.
    Joshi PR; Zierz S
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32295037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of a physiological increase in temperature on mitochondrial fatty acid oxidation in rat myofibers.
    Tardo-Dino PE; Touron J; Baugé S; Bourdon S; Koulmann N; Malgoyre A
    J Appl Physiol (1985); 2019 Aug; 127(2):312-319. PubMed ID: 31161881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of methylglyoxal bis(guanylhydrazone) on hepatic, heart and skeletal muscle mitochondrial carnitine palmitoyltransferase and beta-oxidation of fatty acids.
    Brady LJ; Brady PS; Gandour RD
    Biochem Pharmacol; 1987 Feb; 36(4):447-52. PubMed ID: 3827937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does skeletal muscle carnitine availability influence fuel selection during exercise?
    Stephens FB
    Proc Nutr Soc; 2018 Feb; 77(1):11-19. PubMed ID: 29037265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.