BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37482278)

  • 21. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure.
    Tsuda M; Fukushima A; Matsumoto J; Takada S; Kakutani N; Nambu H; Yamanashi K; Furihata T; Yokota T; Okita K; Kinugawa S; Anzai T
    J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):844-859. PubMed ID: 30168279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Skeletal muscle fuel selection occurs at the mitochondrial level.
    Kuzmiak-Glancy S; Willis WT
    J Exp Biol; 2014 Jun; 217(Pt 11):1993-2003. PubMed ID: 24625643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carnitine palmitoyltransferase I, carnitine palmitoyltransferase II, and acyl-CoA oxidase activities in Atlantic salmon (Salmo salar).
    Frøyland L; Madsen L; Eckhoff KM; Lie O; Berge RK
    Lipids; 1998 Sep; 33(9):923-30. PubMed ID: 9778140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hepatic mitochondrial function in ketogenic states. Diabetes, starvation, and after growth hormone administration.
    DiMarco JP; Hoppel C
    J Clin Invest; 1975 Jun; 55(6):1237-44. PubMed ID: 124319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of hypothalamic fatty acid synthase triggers rapid activation of fatty acid oxidation in skeletal muscle.
    Cha SH; Hu Z; Chohnan S; Lane MD
    Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14557-62. PubMed ID: 16203972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined effects of a ketogenic diet and exercise training alter mitochondrial and peroxisomal substrate oxidative capacity in skeletal muscle.
    Huang TY; Linden MA; Fuller SE; Goldsmith FR; Simon J; Batdorf HM; Scott MC; Essajee NM; Brown JM; Noland RC
    Am J Physiol Endocrinol Metab; 2021 Jun; 320(6):E1053-E1067. PubMed ID: 33843280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combined effects of hypoxia and endurance training on lipid metabolism in rat skeletal muscle.
    Galbès O; Goret L; Caillaud C; Mercier J; Obert P; Candau R; Py G
    Acta Physiol (Oxf); 2008 Jun; 193(2):163-73. PubMed ID: 18081885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle.
    Lefort N; Glancy B; Bowen B; Willis WT; Bailowitz Z; De Filippis EA; Brophy C; Meyer C; Højlund K; Yi Z; Mandarino LJ
    Diabetes; 2010 Oct; 59(10):2444-52. PubMed ID: 20682693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intramuscular mechanisms regulating fatty acid oxidation during exercise.
    Winder WW
    Adv Exp Med Biol; 1998; 441():239-48. PubMed ID: 9781330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial and peroxisomal fatty acid oxidation in elasmobranchs.
    Moyes CD; Buck LT; Hochachka PW
    Am J Physiol; 1990 Mar; 258(3 Pt 2):R756-62. PubMed ID: 2316720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration.
    Anderson EJ; Yamazaki H; Neufer PD
    J Biol Chem; 2007 Oct; 282(43):31257-66. PubMed ID: 17761668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of hepatic fatty acid oxidation at carnitine palmitoyltransferase I by the peroxisome proliferator 2-hydroxy-3-propyl-4-[6-(tetrazol-5-yl) hexyloxy]acetophenone.
    Foxworthy PS; Eacho PI
    Biochem J; 1988 Jun; 252(2):409-14. PubMed ID: 3415664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle.
    Stephens FB; Constantin-Teodosiu D; Greenhaff PL
    J Physiol; 2007 Jun; 581(Pt 2):431-44. PubMed ID: 17331998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A short-term, high-fat diet up-regulates lipid metabolism and gene expression in human skeletal muscle.
    Cameron-Smith D; Burke LM; Angus DJ; Tunstall RJ; Cox GR; Bonen A; Hawley JA; Hargreaves M
    Am J Clin Nutr; 2003 Feb; 77(2):313-8. PubMed ID: 12540388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype.
    Hénique C; Mansouri A; Vavrova E; Lenoir V; Ferry A; Esnous C; Ramond E; Girard J; Bouillaud F; Prip-Buus C; Cohen I
    FASEB J; 2015 Jun; 29(6):2473-83. PubMed ID: 25713059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flux control analysis of mitochondrial oxidative phosphorylation in rat skeletal muscle: pyruvate and palmitoyl-carnitine as substrates give different control patterns.
    Fritzen AJ; Grunnet N; Quistorff B
    Eur J Appl Physiol; 2007 Dec; 101(6):679-89. PubMed ID: 17717681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation.
    McFarlan JT; Yoshida Y; Jain SS; Han XX; Snook LA; Lally J; Smith BK; Glatz JF; Luiken JJ; Sayer RA; Tupling AR; Chabowski A; Holloway GP; Bonen A
    J Biol Chem; 2012 Jul; 287(28):23502-16. PubMed ID: 22584574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Defective fatty acid oxidation in mice with muscle-specific acyl-CoA synthetase 1 deficiency increases amino acid use and impairs muscle function.
    Zhao L; Pascual F; Bacudio L; Suchanek AL; Young PA; Li LO; Martin SA; Camporez JP; Perry RJ; Shulman GI; Klett EL; Coleman RA
    J Biol Chem; 2019 May; 294(22):8819-8833. PubMed ID: 30975900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence of a malonyl-CoA-insensitive carnitine palmitoyltransferase I activity in red skeletal muscle.
    Kim JY; Koves TR; Yu GS; Gulick T; Cortright RN; Dohm GL; Muoio DM
    Am J Physiol Endocrinol Metab; 2002 May; 282(5):E1014-22. PubMed ID: 11934665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation.
    Bezaire V; Spriet LL; Campbell S; Sabet N; Gerrits M; Bonen A; Harper ME
    FASEB J; 2005 Jun; 19(8):977-9. PubMed ID: 15814607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.