BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37482278)

  • 41. Aspects of long-chain acyl-COA metabolism.
    Tol VA
    Mol Cell Biochem; 1975 Apr; 7(1):19-31. PubMed ID: 1134497
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced lipid-but not carbohydrate-supported mitochondrial respiration in skeletal muscle of PGC-1α overexpressing mice.
    Hoeks J; Arany Z; Phielix E; Moonen-Kornips E; Hesselink MK; Schrauwen P
    J Cell Physiol; 2012 Mar; 227(3):1026-33. PubMed ID: 21520076
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Skeletal muscle undergoes fiber type metabolic switch without myosin heavy chain switch in response to defective fatty acid oxidation.
    Pereyra AS; Lin CT; Sanchez DM; Laskin J; Spangenburg EE; Neufer PD; Fisher-Wellman K; Ellis JM
    Mol Metab; 2022 May; 59():101456. PubMed ID: 35150906
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Astaxanthin improves muscle lipid metabolism in exercise via inhibitory effect of oxidative CPT I modification.
    Aoi W; Naito Y; Takanami Y; Ishii T; Kawai Y; Akagiri S; Kato Y; Osawa T; Yoshikawa T
    Biochem Biophys Res Commun; 2008 Feb; 366(4):892-7. PubMed ID: 18082622
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fatty acid import into mitochondria.
    Kerner J; Hoppel C
    Biochim Biophys Acta; 2000 Jun; 1486(1):1-17. PubMed ID: 10856709
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Retinoic acid treatment increases lipid oxidation capacity in skeletal muscle of mice.
    Amengual J; Ribot J; Bonet ML; Palou A
    Obesity (Silver Spring); 2008 Mar; 16(3):585-91. PubMed ID: 18239600
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hyperthyroidism facilitates cardiac fatty acid oxidation through altered regulation of cardiac carnitine palmitoyltransferase: studies in vivo and with cardiac myocytes.
    Sugden MC; Priestman DA; Orfali KA; Holness MJ
    Horm Metab Res; 1999 May; 31(5):300-6. PubMed ID: 10422724
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New insights into the interaction of carbohydrate and fat metabolism during exercise.
    Spriet LL
    Sports Med; 2014 May; 44 Suppl 1(Suppl 1):S87-96. PubMed ID: 24791920
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice.
    Keung W; Ussher JR; Jaswal JS; Raubenheimer M; Lam VH; Wagg CS; Lopaschuk GD
    Diabetes; 2013 Mar; 62(3):711-20. PubMed ID: 23139350
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dietary fatty acids influence the activity and metabolic control of mitochondrial carnitine palmitoyltransferase I in rat heart and skeletal muscle.
    Power GW; Newsholme EA
    J Nutr; 1997 Nov; 127(11):2142-50. PubMed ID: 9349840
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content.
    Bruce CR; Thrush AB; Mertz VA; Bezaire V; Chabowski A; Heigenhauser GJ; Dyck DJ
    Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E99-E107. PubMed ID: 16464906
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tissue-specific changes in fatty acid oxidation in hypoxic heart and skeletal muscle.
    Morash AJ; Kotwica AO; Murray AJ
    Am J Physiol Regul Integr Comp Physiol; 2013 Sep; 305(5):R534-41. PubMed ID: 23785078
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism.
    Koves TR; Noland RC; Bates AL; Henes ST; Muoio DM; Cortright RN
    Am J Physiol Cell Physiol; 2005 May; 288(5):C1074-82. PubMed ID: 15647392
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Muscle expression of a malonyl-CoA-insensitive carnitine palmitoyltransferase-1 protects mice against high-fat/high-sucrose diet-induced insulin resistance.
    Vavrova E; Lenoir V; Alves-Guerra MC; Denis RG; Castel J; Esnous C; Dyck JR; Luquet S; Metzger D; Bouillaud F; Prip-Buus C
    Am J Physiol Endocrinol Metab; 2016 Sep; 311(3):E649-60. PubMed ID: 27507552
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel effect of C75 on carnitine palmitoyltransferase I activity and palmitate oxidation.
    Bentebibel A; Sebastián D; Herrero L; López-Viñas E; Serra D; Asins G; Gómez-Puertas P; Hegardt FG
    Biochemistry; 2006 Apr; 45(14):4339-50. PubMed ID: 16584169
    [TBL] [Abstract][Full Text] [Related]  

  • 56. L-Carnitine enhances exercise endurance capacity by promoting muscle oxidative metabolism in mice.
    Kim JH; Pan JH; Lee ES; Kim YJ
    Biochem Biophys Res Commun; 2015 Aug; 464(2):568-73. PubMed ID: 26164228
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New genetic defects in mitochondrial fatty acid oxidation and carnitine deficiency.
    Stanley CA
    Adv Pediatr; 1987; 34():59-88. PubMed ID: 3318304
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reconstitution of purified, active and malonyl-CoA-sensitive rat liver carnitine palmitoyltransferase I: relationship between membrane environment and malonyl-CoA sensitivity.
    McGarry JD; Brown NF
    Biochem J; 2000 Jul; 349(Pt 1):179-87. PubMed ID: 10861226
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carnitine palmitoyltransferase I control of acetogenesis, the major pathway of fatty acid {beta}-oxidation in liver of neonatal swine.
    Lin X; Shim K; Odle J
    Am J Physiol Regul Integr Comp Physiol; 2010 May; 298(5):R1435-43. PubMed ID: 20237302
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes.
    Civitarese AE; Hesselink MK; Russell AP; Ravussin E; Schrauwen P
    Am J Physiol Endocrinol Metab; 2005 Dec; 289(6):E1023-9. PubMed ID: 16030063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.