These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37482317)

  • 1. Retention and release of black phosphorus nanoparticles in porous media under various physicochemical conditions.
    Liang Y; Liu J; Dong P; Qin Y; Zhang R; Bradford SA
    Chemosphere; 2023 Oct; 339():139604. PubMed ID: 37482317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size.
    Kamrani S; Rezaei M; Kord M; Baalousha M
    Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter.
    Li C; Hassan A; Palmai M; Xie Y; Snee PT; Powell BA; Murdoch LC; Darnault CJG
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8050-8073. PubMed ID: 33051847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of the Transport of Plastic Nanoparticles to Typical Phosphates Associated with Ionic Strength and Solution pH.
    Liu X; Liang Y; Peng Y; Meng T; Xu L; Dong P
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of myo-inositol hexakisphosphate, ferrihydrite coating, ionic strength and pH on the transport of TiO
    Tang Y; Wang X; Yan Y; Zeng H; Wang G; Tan W; Liu F; Feng X
    Environ Pollut; 2019 Sep; 252(Pt B):1193-1201. PubMed ID: 31252117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent aggregation and transport of graphene oxide in saturated porous media: Roles of temperature, cation type, and electrolyte concentration.
    Wang M; Gao B; Tang D; Yu C
    Environ Pollut; 2018 Apr; 235():350-357. PubMed ID: 29304468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the critical role of nanoscale surface roughness on the retention and release of silver nanoparticles in porous media.
    Liang Y; Zhou J; Dong Y; Klumpp E; Šimůnek J; Bradford SA
    Environ Pollut; 2020 Mar; 258():113803. PubMed ID: 31864922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-SiO
    Ghosh D; Das S; Gahlot VK; Pulimi M; Anand S; Chandrasekaran N; Rai PK; Mukherjee A
    J Contam Hydrol; 2022 Jun; 248():104029. PubMed ID: 35653834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention and transport of graphene oxide in water-saturated limestone media.
    Dong S; Sun Y; Gao B; Shi X; Xu H; Wu J; Wu J
    Chemosphere; 2017 Aug; 180():506-512. PubMed ID: 28431388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.
    Torkzaban S; Kim HN; Simunek J; Bradford SA
    Environ Sci Technol; 2010 Mar; 44(5):1662-9. PubMed ID: 20136144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of biochar on transport and retention of phosphorus in porous media: Laboratory test and modeling.
    Li Y; Zhao Y; Cheng K; Yang F
    Environ Pollut; 2022 Mar; 297():118788. PubMed ID: 34990736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide nanoparticles and hematite colloids behave oppositely in their co-transport in saturated porous media.
    Wang M; Zhang H; Chen W; Lu T; Yang H; Wang X; Lu M; Qi Z; Li D
    Chemosphere; 2021 Feb; 265():129081. PubMed ID: 33288283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol.
    Wang D; Ge L; He J; Zhang W; Jaisi DP; Zhou D
    J Contam Hydrol; 2014 Aug; 164():35-48. PubMed ID: 24926609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and retention of Shewanella oneidensis strain MR1 in water-saturated porous media with different grain-surface properties.
    Ning Z; Li R; Lian K; Liao P; Liao H; Liu C
    Chemosphere; 2019 Oct; 233():57-66. PubMed ID: 31163309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical role of surface roughness on colloid retention and release in porous media.
    Torkzaban S; Bradford SA
    Water Res; 2016 Jan; 88():274-284. PubMed ID: 26512805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled factors influencing the transport and retention of Cryptosporidium parvum oocysts in saturated porous media.
    Kim HN; Walker SL; Bradford SA
    Water Res; 2010 Feb; 44(4):1213-23. PubMed ID: 19854467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.
    Bradford SA; Torkzaban S; Leij F; Simunek J
    J Contam Hydrol; 2015 Oct; 181():141-52. PubMed ID: 25913320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of TiO2 nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flowrate.
    Chowdhury I; Hong Y; Honda RJ; Walker SL
    J Colloid Interface Sci; 2011 Aug; 360(2):548-55. PubMed ID: 21640358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.