These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 37482337)
1. Use of metal nanoparticles in agriculture. A review on the effects on plant germination. Santás-Miguel V; Arias-Estévez M; Rodríguez-Seijo A; Arenas-Lago D Environ Pollut; 2023 Oct; 334():122222. PubMed ID: 37482337 [TBL] [Abstract][Full Text] [Related]
2. Effects of metal nanoparticle-mediated treatment on seed quality parameters of different crops. Singh N; Bhuker A; Jeevanadam J Naunyn Schmiedebergs Arch Pharmacol; 2021 Jun; 394(6):1067-1089. PubMed ID: 33660031 [TBL] [Abstract][Full Text] [Related]
3. Nanotechnology for sustainable agro-food systems: The need and role of nanoparticles in protecting plants and improving crop productivity. Guleria G; Thakur S; Shandilya M; Sharma S; Thakur S; Kalia S Plant Physiol Biochem; 2023 Jan; 194():533-549. PubMed ID: 36521290 [TBL] [Abstract][Full Text] [Related]
4. A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Aqeel U; Aftab T; Khan MMA; Naeem M; Khan MN Chemosphere; 2022 Mar; 291(Pt 1):132672. PubMed ID: 34756946 [TBL] [Abstract][Full Text] [Related]
5. Advancing sustainable agriculture: a critical review of smart and eco-friendly nanomaterial applications. Balusamy SR; Joshi AS; Perumalsamy H; Mijakovic I; Singh P J Nanobiotechnology; 2023 Oct; 21(1):372. PubMed ID: 37821961 [TBL] [Abstract][Full Text] [Related]
6. Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. Zhao L; Lu L; Wang A; Zhang H; Huang M; Wu H; Xing B; Wang Z; Ji R J Agric Food Chem; 2020 Feb; 68(7):1935-1947. PubMed ID: 32003987 [TBL] [Abstract][Full Text] [Related]
7. Nanotechnology - A new frontier of nano-farming in agricultural and food production and its development. Haris M; Hussain T; Mohamed HI; Khan A; Ansari MS; Tauseef A; Khan AA; Akhtar N Sci Total Environ; 2023 Jan; 857(Pt 3):159639. PubMed ID: 36283520 [TBL] [Abstract][Full Text] [Related]
8. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. El-Temsah YS; Joner EJ Environ Toxicol; 2012 Jan; 27(1):42-9. PubMed ID: 20549639 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesized metal oxide nanoparticles for sustainable agriculture: next-generation nanotechnology for crop production, protection and management. Maity D; Gupta U; Saha S Nanoscale; 2022 Oct; 14(38):13950-13989. PubMed ID: 36124943 [TBL] [Abstract][Full Text] [Related]
10. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? Dimkpa CO J Basic Microbiol; 2014 Sep; 54(9):889-904. PubMed ID: 24913194 [TBL] [Abstract][Full Text] [Related]
11. Interaction of plants and metal nanoparticles: Exploring its molecular mechanisms for sustainable agriculture and crop improvement. Francis DV; Abdalla AK; Mahakham W; Sarmah AK; Ahmed ZFR Environ Int; 2024 Aug; 190():108859. PubMed ID: 38970982 [TBL] [Abstract][Full Text] [Related]
12. Brief overview of the application of silver nanoparticles to improve growth of crop plants. Mehmood A IET Nanobiotechnol; 2018 Sep; 12(6):701-705. PubMed ID: 30104441 [TBL] [Abstract][Full Text] [Related]
13. Trophic transfer of silver nanoparticles shifts metabolism in snails and reduces food safety. Dang F; Li C; Nunes LM; Tang R; Wang J; Dong S; Peijnenburg WJGM; Wang W; Xing B; Lam SS; Sonne C Environ Int; 2023 Jun; 176():107990. PubMed ID: 37247467 [TBL] [Abstract][Full Text] [Related]
14. Nanotechnology advances for sustainable agriculture: current knowledge and prospects in plant growth modulation and nutrition. Fincheira P; Tortella G; Seabra AB; Quiroz A; Diez MC; Rubilar O Planta; 2021 Sep; 254(4):66. PubMed ID: 34491441 [TBL] [Abstract][Full Text] [Related]
15. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Liu R; Lal R Sci Total Environ; 2015 May; 514():131-9. PubMed ID: 25659311 [TBL] [Abstract][Full Text] [Related]
16. Nanotechnology in agriculture: Current status, challenges and future opportunities. Usman M; Farooq M; Wakeel A; Nawaz A; Cheema SA; Rehman HU; Ashraf I; Sanaullah M Sci Total Environ; 2020 Jun; 721():137778. PubMed ID: 32179352 [TBL] [Abstract][Full Text] [Related]
17. Nanotechnology in precision agriculture: Advancing towards sustainable crop production. Zain M; Ma H; Ur Rahman S; Nuruzzaman M; Chaudhary S; Azeem I; Mehmood F; Duan A; Sun C Plant Physiol Biochem; 2024 Jan; 206():108244. PubMed ID: 38071802 [TBL] [Abstract][Full Text] [Related]
18. Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review. Thiruvengadam M; Chi HY; Kim SH Plant Physiol Biochem; 2024 Feb; 207():108370. PubMed ID: 38271861 [TBL] [Abstract][Full Text] [Related]
19. Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and animals. Courtois P; Rorat A; Lemiere S; Guyoneaud R; Attard E; Levard C; Vandenbulcke F Environ Pollut; 2019 Oct; 253():578-598. PubMed ID: 31330350 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Pokhrel LR; Dubey B Sci Total Environ; 2013 May; 452-453():321-32. PubMed ID: 23532040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]