BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37482422)

  • 1. Construction of the Rhodobacter sphaeroides strain overproducing 5-aminolevulinic acid by insertion of endogenous promoter.
    Kojima T; Masuda S
    J Gen Appl Microbiol; 2024 Mar; 69(5):270-277. PubMed ID: 37482422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of 5-aminolevulinic acid synthesis in Rhodobacter sphaeroides 2.4.1: the genetic basis of mutant H-5 auxotrophy.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1995 May; 177(10):2760-8. PubMed ID: 7751286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides.
    Neidle EL; Kaplan S
    J Bacteriol; 1993 Apr; 175(8):2304-13. PubMed ID: 8468291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes.
    Neidle EL; Kaplan S
    J Bacteriol; 1993 Apr; 175(8):2292-303. PubMed ID: 8468290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving the roles of the Rhodobacter sphaeroides HemA and HemT 5-aminolevulinic acid synthases.
    Stoian N; Kaganjo J; Zeilstra-Ryalls J
    Mol Microbiol; 2018 Dec; 110(6):1011-1029. PubMed ID: 30232811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1995 Nov; 177(22):6422-31. PubMed ID: 7592416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and sequencing of the hemA gene of Rhodobacter capsulatus and isolation of a delta-aminolevulinic acid-dependent mutant strain.
    Hornberger U; Liebetanz R; Tichy HV; Drews G
    Mol Gen Genet; 1990 May; 221(3):371-8. PubMed ID: 2381418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene.
    van der Werf MJ; Zeikus JG
    Appl Environ Microbiol; 1996 Oct; 62(10):3560-6. PubMed ID: 8837411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the rhodobacter sphaeroides 5-aminolaevulinic acid synthase isoenzymes, HemA and HemT, isolated from recombinant Escherichia coli.
    Bolt EL; Kryszak L; Zeilstra-Ryalls J; Shoolingin-Jordan PM; Warren MJ
    Eur J Biochem; 1999 Oct; 265(1):290-9. PubMed ID: 10491185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: effect of a transposon insertion in the hbdA gene.
    Fales L; Kryszak L; Zeilstra-Ryalls J
    J Bacteriol; 2001 Mar; 183(5):1568-76. PubMed ID: 11160087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1996 Feb; 178(4):985-93. PubMed ID: 8576072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties.
    Lou JW; Zhu L; Wu MB; Yang LR; Lin JP; Cen PL
    J Zhejiang Univ Sci B; 2014 May; 15(5):491-9. PubMed ID: 24793767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of Influencing Factors on Biomass Accumulation and 5-Aminolevulinic Acid (ALA) Yield in Rhodobacter sphaeroides Wastewater Treatment.
    Liu S; Li X; Zhang G; Zhang J
    J Microbiol Biotechnol; 2015 Nov; 25(11):1920-7. PubMed ID: 26139613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production.
    Zhang L; Chen J; Chen N; Sun J; Zheng P; Ma Y
    Biotechnol Lett; 2013 May; 35(5):763-8. PubMed ID: 23338702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of intracellular 5-aminolevulinic acid by a newly identified halotolerant Rhodobacter sphaeroides.
    Tangprasittipap A; Prasertsan P; Choorit W; Sasaki K
    Biotechnol Lett; 2007 May; 29(5):773-8. PubMed ID: 17245554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo analysis of the role of PrrA in Rhodobacter sphaeroides 2.4.1 hemA gene expression.
    Ranson-Olson B; Jones DF; Donohue TJ; Zeilstra-Ryalls JH
    J Bacteriol; 2006 May; 188(9):3208-18. PubMed ID: 16621813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of 5-aminolevulinic acid by an Escherichia coli aminolevulinate dehydratase mutant that overproduces Rhodobacter sphaeroides aminolevulinate synthase.
    Xie L; Eiteman MA; Altman E
    Biotechnol Lett; 2003 Oct; 25(20):1751-5. PubMed ID: 14626421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thioredoxin is involved in oxygen-regulated formation of the photosynthetic apparatus of Rhodobacter sphaeroides.
    Pasternak C; Haberzettl K; Klug G
    J Bacteriol; 1999 Jan; 181(1):100-6. PubMed ID: 9864318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. delta-Aminolevulinate couples cycA transcription to changes in heme availability in Rhodobacter sphaeroides.
    Schilke BA; Donohue TJ
    J Mol Biol; 1992 Jul; 226(1):101-15. PubMed ID: 1320126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated β-Carotene Synthesis by the Engineered
    Qiang S; Su AP; Li Y; Chen Z; Hu CY; Meng YH
    J Agric Food Chem; 2019 Aug; 67(34):9560-9568. PubMed ID: 31368704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.