These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 37482536)
1. Buckwheat OMICS: present status and future prospects. Zargar SM; Hami A; Manzoor M; Mir RA; Mahajan R; Bhat KA; Gani U; Sofi NR; Sofi PA; Masi A Crit Rev Biotechnol; 2024 Aug; 44(5):717-734. PubMed ID: 37482536 [TBL] [Abstract][Full Text] [Related]
2. Revisiting the versatile buckwheat: reinvigorating genetic gains through integrated breeding and genomics approach. Joshi DC; Chaudhari GV; Sood S; Kant L; Pattanayak A; Zhang K; Fan Y; Janovská D; Meglič V; Zhou M Planta; 2019 Sep; 250(3):783-801. PubMed ID: 30623242 [TBL] [Abstract][Full Text] [Related]
3. Nutraceutical crop buckwheat: a concealed wealth in the lap of Himalayas. Kumari A; Chaudhary HK Crit Rev Biotechnol; 2020 Jun; 40(4):539-554. PubMed ID: 32290728 [TBL] [Abstract][Full Text] [Related]
4. Beyond the Cereal Box: Breeding Buckwheat as a Strategic Crop for Human Nutrition. Chettry U; Chrungoo NK Plant Foods Hum Nutr; 2021 Dec; 76(4):399-409. PubMed ID: 34652552 [TBL] [Abstract][Full Text] [Related]
5. Strategic enhancement of genetic gain for nutraceutical development in buckwheat: A genomics-driven perspective. Joshi DC; Zhang K; Wang C; Chandora R; Khurshid M; Li J; He M; Georgiev MI; Zhou M Biotechnol Adv; 2020; 39():107479. PubMed ID: 31707074 [TBL] [Abstract][Full Text] [Related]
6. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective. Muthamilarasan M; Singh NK; Prasad M Adv Genet; 2019; 103():1-38. PubMed ID: 30904092 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of Plant Productivity in the Post-Genomics Era. Thao NP; Tran LS Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678 [TBL] [Abstract][Full Text] [Related]
8. Comparative and population genomics of buckwheat species reveal key determinants of flavor and fertility. Zhang K; He Y; Lu X; Shi Y; Zhao H; Li X; Li J; Liu Y; Ouyang Y; Tang Y; Ren X; Zhang X; Yang W; Sun Z; Zhang C; Quinet M; Luthar Z; Germ M; Kreft I; Janovská D; Meglič V; Pipan B; Georgiev MI; Studer B; Chapman MA; Zhou M Mol Plant; 2023 Sep; 16(9):1427-1444. PubMed ID: 37649255 [TBL] [Abstract][Full Text] [Related]
10. Metabolic-GWAS provides insights into genetic architecture of seed metabolome in buckwheat. Zargar SM; Manzoor M; Bhat B; Wani AB; Sofi PA; Sudan J; Ebinezer LB; Dall'Acqua S; Peron G; Masi A BMC Plant Biol; 2023 Jul; 23(1):373. PubMed ID: 37501129 [TBL] [Abstract][Full Text] [Related]
11. Advancements in multi-omics for nutraceutical enhancement and traits improvement in buckwheat. Song Y; Long C; Wang Y; An Y; Lu Y Crit Rev Biotechnol; 2024 Aug; ():1-26. PubMed ID: 39160127 [TBL] [Abstract][Full Text] [Related]
12. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. Chandra T; Jaiswal S; Tomar RS; Iquebal MA; Kumar D Planta; 2024 Sep; 260(4):103. PubMed ID: 39304579 [TBL] [Abstract][Full Text] [Related]
13. Rethinking underutilized cereal crops: pan-omics integration and green system biology. Rahim MS; Sharma V; Pragati Yadav ; Parveen A; Kumar A; Roy J; Kumar V Planta; 2023 Sep; 258(5):91. PubMed ID: 37777666 [TBL] [Abstract][Full Text] [Related]
15. Tartary buckwheat database (TBD): an integrative platform for gene analysis of and biological information on Tartary buckwheat. Liu M; Sun W; Ma Z; Hu Y; Chen H J Zhejiang Univ Sci B; 2021 Nov; 22(11):954-958. PubMed ID: 34783225 [TBL] [Abstract][Full Text] [Related]
16. Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Zhang K; He M; Fan Y; Zhao H; Gao B; Yang K; Li F; Tang Y; Gao Q; Lin T; Quinet M; Janovská D; Meglič V; Kwiatkowski J; Romanova O; Chrungoo N; Suzuki T; Luthar Z; Germ M; Woo SH; Georgiev MI; Zhou M Genome Biol; 2021 Jan; 22(1):23. PubMed ID: 33430931 [TBL] [Abstract][Full Text] [Related]
17. Genetic and genomic research for the development of an efficient breeding system in heterostylous self-incompatible common buckwheat (Fagopyrum esculentum). Matsui K; Yasui Y Theor Appl Genet; 2020 May; 133(5):1641-1653. PubMed ID: 32152716 [TBL] [Abstract][Full Text] [Related]
18. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants. Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899 [TBL] [Abstract][Full Text] [Related]
19. Cytochrome P450 family: Genome-wide identification provides insights into the rutin synthesis pathway in Tartary buckwheat and the improvement of agricultural product quality. Sun W; Ma Z; Liu M Int J Biol Macromol; 2020 Dec; 164():4032-4045. PubMed ID: 32896558 [TBL] [Abstract][Full Text] [Related]
20. Comparative Analysis of Four Buckwheat Species Based on Morphology and Complete Chloroplast Genome Sequences. Wang CL; Ding MQ; Zou CY; Zhu XM; Tang Y; Zhou ML; Shao JR Sci Rep; 2017 Jul; 7(1):6514. PubMed ID: 28747666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]