These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Healthy and Resilient Cereals and Pseudo-Cereals for Marginal Agriculture: Molecular Advances for Improving Nutrient Bioavailability. Rodríguez JP; Rahman H; Thushar S; Singh RK Front Genet; 2020; 11():49. PubMed ID: 32174958 [TBL] [Abstract][Full Text] [Related]
23. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches. Haq SAU; Bashir T; Roberts TH; Husaini AM Mol Biol Rep; 2023 Dec; 51(1):41. PubMed ID: 38158512 [TBL] [Abstract][Full Text] [Related]
24. Genomic resources in plant breeding for sustainable agriculture. Thudi M; Palakurthi R; Schnable JC; Chitikineni A; Dreisigacker S; Mace E; Srivastava RK; Satyavathi CT; Odeny D; Tiwari VK; Lam HM; Hong YB; Singh VK; Li G; Xu Y; Chen X; Kaila S; Nguyen H; Sivasankar S; Jackson SA; Close TJ; Shubo W; Varshney RK J Plant Physiol; 2021 Feb; 257():153351. PubMed ID: 33412425 [TBL] [Abstract][Full Text] [Related]
25. Targeted amplicon sequencing + next-generation sequencing-based bulked segregant analysis identified genetic loci associated with preharvest sprouting tolerance in common buckwheat (Fagopyrum esculentum). Takeshima R; Ogiso-Tanaka E; Yasui Y; Matsui K BMC Plant Biol; 2021 Jan; 21(1):18. PubMed ID: 33407135 [TBL] [Abstract][Full Text] [Related]
26. High-quality Fagopyrum esculentum genome provides insights into the flavonoid accumulation among different tissues and self-incompatibility. He Q; Ma D; Li W; Xing L; Zhang H; Wang Y; Du C; Li X; Jia Z; Li X; Liu J; Liu Z; Miao Y; Feng R; Lv Y; Wang M; Lu H; Li X; Xiao Y; Wang R; Liang H; Zhou Q; Zhang L; Liang C; Du H J Integr Plant Biol; 2023 Jun; 65(6):1423-1441. PubMed ID: 36680412 [TBL] [Abstract][Full Text] [Related]
27. Integrating multi-omics data for crop improvement. Scossa F; Alseekh S; Fernie AR J Plant Physiol; 2021 Feb; 257():153352. PubMed ID: 33360148 [TBL] [Abstract][Full Text] [Related]
28. Multi-omics revolution to promote plant breeding efficiency. Mahmood U; Li X; Fan Y; Chang W; Niu Y; Li J; Qu C; Lu K Front Plant Sci; 2022; 13():1062952. PubMed ID: 36570904 [TBL] [Abstract][Full Text] [Related]
29. Omics: The way forward to enhance abiotic stress tolerance in Raza A; Razzaq A; Mehmood SS; Hussain MA; Wei S; He H; Zaman QU; Xuekun Z; Hasanuzzaman M GM Crops Food; 2021 Jan; 12(1):251-281. PubMed ID: 33464960 [TBL] [Abstract][Full Text] [Related]
30. Integrating omics databases for enhanced crop breeding. Chao H; Zhang S; Hu Y; Ni Q; Xin S; Zhao L; Ivanisenko VA; Orlov YL; Chen M J Integr Bioinform; 2023 Dec; 20(4):. PubMed ID: 37486120 [TBL] [Abstract][Full Text] [Related]
31. Orphan legumes: harnessing their potential for food, nutritional and health security through genetic approaches. Chongtham SK; Devi EL; Samantara K; Yasin JK; Wani SH; Mukherjee S; Razzaq A; Bhupenchandra I; Jat AL; Singh LK; Kumar A Planta; 2022 Jun; 256(2):24. PubMed ID: 35767119 [TBL] [Abstract][Full Text] [Related]
32. Comparison of buckwheat genomes reveals the genetic basis of metabolomic divergence and ecotype differentiation. He M; He Y; Zhang K; Lu X; Zhang X; Gao B; Fan Y; Zhao H; Jha R; Huda MN; Tang Y; Wang J; Yang W; Yan M; Cheng J; Ruan J; Dulloo E; Zhang Z; Georgiev MI; Chapman MA; Zhou M New Phytol; 2022 Sep; 235(5):1927-1943. PubMed ID: 35701896 [TBL] [Abstract][Full Text] [Related]
34. Unlocking the potential of Kodo millet: reviving an indigenous super grain for tomorrow's nutrition. Jeeva G; Suhasini B; Pramitha L; Jency JP; Joshi P; Ravikesavan R; Elango D Planta; 2024 May; 259(6):140. PubMed ID: 38691193 [TBL] [Abstract][Full Text] [Related]
35. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. Zenda T; Liu S; Dong A; Li J; Wang Y; Liu X; Wang N; Duan H Front Plant Sci; 2021; 12():774994. PubMed ID: 34925418 [TBL] [Abstract][Full Text] [Related]
36. Translational genomics and multi-omics integrated approaches as a useful strategy for crop breeding. Choi HK Genes Genomics; 2019 Feb; 41(2):133-146. PubMed ID: 30353370 [TBL] [Abstract][Full Text] [Related]
37. Smart breeding approaches in post-genomics era for developing climate-resilient food crops. Naqvi RZ; Siddiqui HA; Mahmood MA; Najeebullah S; Ehsan A; Azhar M; Farooq M; Amin I; Asad S; Mukhtar Z; Mansoor S; Asif M Front Plant Sci; 2022; 13():972164. PubMed ID: 36186056 [TBL] [Abstract][Full Text] [Related]
38. Indian Wheat Genomics Initiative for Harnessing the Potential of Wheat Germplasm Resources for Breeding Disease-Resistant, Nutrient-Dense, and Climate-Resilient Cultivars. Kumar S; Jacob SR; Mir RR; Vikas VK; Kulwal P; Chandra T; Kaur S; Kumar U; Kumar S; Sharma S; Singh R; Prasad S; Singh AM; Singh AK; Kumari J; Saharan MS; Bhardwaj SC; Prasad M; Kalia S; Singh K Front Genet; 2022; 13():834366. PubMed ID: 35846116 [TBL] [Abstract][Full Text] [Related]
39. Genetic Enhancement of Cereals Using Genomic Resources for Nutritional Food Security. Chaudhary N; Salgotra RK; Chauhan BS Genes (Basel); 2023 Sep; 14(9):. PubMed ID: 37761910 [TBL] [Abstract][Full Text] [Related]
40. The Tartary Buckwheat Genome Provides Insights into Rutin Biosynthesis and Abiotic Stress Tolerance. Zhang L; Li X; Ma B; Gao Q; Du H; Han Y; Li Y; Cao Y; Qi M; Zhu Y; Lu H; Ma M; Liu L; Zhou J; Nan C; Qin Y; Wang J; Cui L; Liu H; Liang C; Qiao Z Mol Plant; 2017 Sep; 10(9):1224-1237. PubMed ID: 28866080 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]