These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 37482536)
41. Different Phenylalanine Pathway Responses to Cold Stress Based on Metabolomics and Transcriptomics in Tartary Buckwheat Landraces. Song Y; Feng J; Liu D; Long C J Agric Food Chem; 2022 Jan; 70(2):687-698. PubMed ID: 34989558 [TBL] [Abstract][Full Text] [Related]
42. Common bean proteomics: Present status and future strategies. Zargar SM; Mahajan R; Nazir M; Nagar P; Kim ST; Rai V; Masi A; Ahmad SM; Shah RA; Ganai NA; Agrawal GK; Rakwal R J Proteomics; 2017 Oct; 169():239-248. PubMed ID: 28347863 [TBL] [Abstract][Full Text] [Related]
43. Transcriptome analysis of filling stage seeds among three buckwheat species with emphasis on rutin accumulation. Gao J; Wang T; Liu M; Liu J; Zhang Z PLoS One; 2017; 12(12):e0189672. PubMed ID: 29261741 [TBL] [Abstract][Full Text] [Related]
44. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops. Kumar J; Kumar A; Sen Gupta D; Kumar S; DePauw RM Heredity (Edinb); 2022 Jun; 128(6):473-496. PubMed ID: 35249099 [TBL] [Abstract][Full Text] [Related]
45. The Prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation. Rajpal VR; Singh A; Kathpalia R; Thakur RK; Khan MK; Pandey A; Hamurcu M; Raina SN Front Plant Sci; 2023; 14():1127239. PubMed ID: 36998696 [TBL] [Abstract][Full Text] [Related]
46. Omics approaches in Khandagale K; Krishna R; Roylawar P; Ade AB; Benke A; Shinde B; Singh M; Gawande SJ; Rai A PeerJ; 2020; 8():e9824. PubMed ID: 32974094 [TBL] [Abstract][Full Text] [Related]
47. Multi-omics identification of a key glycosyl hydrolase gene FtGH1 involved in rutin hydrolysis in Tartary buckwheat (Fagopyrum tataricum). Lai D; Zhang K; He Y; Fan Y; Li W; Shi Y; Gao Y; Huang X; He J; Zhao H; Lu X; Xiao Y; Cheng J; Ruan J; Georgiev MI; Fernie AR; Zhou M Plant Biotechnol J; 2024 May; 22(5):1206-1223. PubMed ID: 38062934 [TBL] [Abstract][Full Text] [Related]
48. Recent advances in plant translational genomics for crop improvement. Mathur S; Singh D; Ranjan R Adv Protein Chem Struct Biol; 2024; 139():335-382. PubMed ID: 38448140 [TBL] [Abstract][Full Text] [Related]
49. Basic helix-loop-helix (bHLH) gene family in Tartary buckwheat (Fagopyrum tataricum): Genome-wide identification, phylogeny, evolutionary expansion and expression analyses. Sun W; Jin X; Ma Z; Chen H; Liu M Int J Biol Macromol; 2020 Jul; 155():1478-1490. PubMed ID: 31734362 [TBL] [Abstract][Full Text] [Related]
50. Brown-top millet: an overview of breeding, genetic, and genomic resources development for crop improvement. Bhavani P; Nandini C; Maharajan T; Ningaraju TM; Nandini B; Parveen SG; Pushpa K; Ravikumar RL; Nagaraja TE; Ceasar SA Planta; 2024 May; 260(1):10. PubMed ID: 38796805 [TBL] [Abstract][Full Text] [Related]
51. Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Mathiazhagan M; Chidambara B; Hunashikatti LR; Ravishankar KV Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946829 [TBL] [Abstract][Full Text] [Related]
52. Germplasm Resources and Metabolite Marker Screening of High-Flavonoid Tartary Buckwheat ( Wang P; Li Q; Wei J; Zeng S; Sun B; Sun W; Ma P J Agric Food Chem; 2023 Dec; 71(50):20131-20145. PubMed ID: 38063436 [TBL] [Abstract][Full Text] [Related]
53. Integrated omics approaches for flax improvement under abiotic and biotic stress: Current status and future prospects. Yadav B; Kaur V; Narayan OP; Yadav SK; Kumar A; Wankhede DP Front Plant Sci; 2022; 13():931275. PubMed ID: 35958216 [TBL] [Abstract][Full Text] [Related]
54. Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance. Ashraf MF; Hou D; Hussain Q; Imran M; Pei J; Ali M; Shehzad A; Anwar M; Noman A; Waseem M; Lin X Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054836 [TBL] [Abstract][Full Text] [Related]
55. QTL mapping and candidate gene analysis for yield and grain weight/size in Tartary buckwheat. Li R; Chen Z; Zheng R; Chen Q; Deng J; Li H; Huang J; Liang C; Shi T BMC Plant Biol; 2023 Jan; 23(1):58. PubMed ID: 36703107 [TBL] [Abstract][Full Text] [Related]
56. Integration of OMICS Technologies for Crop Improvement. Faryad A; Aziz F; Tahir J; Kousar M; Qasim M; Shamim A Protein Pept Lett; 2021; 28(8):896-908. PubMed ID: 33745421 [TBL] [Abstract][Full Text] [Related]
57. Improvement of little millet (Panicum sumatrense) using novel omics platform and genetic resource integration. Mishra A; Dash S; Barpanda T; Choudhury S; Mishra P; Dash M; Swain D Planta; 2024 Jul; 260(3):60. PubMed ID: 39052093 [TBL] [Abstract][Full Text] [Related]
58. Genome-wide identification, expression analysis and functional study of the GRAS gene family in Tartary buckwheat (Fagopyrum tataricum). Liu M; Huang L; Ma Z; Sun W; Wu Q; Tang Z; Bu T; Li C; Chen H BMC Plant Biol; 2019 Aug; 19(1):342. PubMed ID: 31387526 [TBL] [Abstract][Full Text] [Related]
59. Integrating Omics and Gene Editing Tools for Rapid Improvement of Traditional Food Plants for Diversified and Sustainable Food Security. Kumar A; Anju T; Kumar S; Chhapekar SS; Sreedharan S; Singh S; Choi SR; Ramchiary N; Lim YP Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360856 [TBL] [Abstract][Full Text] [Related]
60. A comprehensive and conceptual overview of omics-based approaches for enhancing the resilience of vegetable crops against abiotic stresses. Mangal V; Lal MK; Tiwari RK; Altaf MA; Sood S; Gahlaut V; Bhatt A; Thakur AK; Kumar R; Bhardwaj V; Kumar V; Singh B; Singh R; Kumar D Planta; 2023 Mar; 257(4):80. PubMed ID: 36913037 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]