These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 37482536)
81. Germplasm, Breeding, and Genomics in Potato Improvement of Biotic and Abiotic Stresses Tolerance. Tiwari JK; Buckseth T; Zinta R; Bhatia N; Dalamu D; Naik S; Poonia AK; Kardile HB; Challam C; Singh RK; Luthra SK; Kumar V; Kumar M Front Plant Sci; 2022; 13():805671. PubMed ID: 35197996 [TBL] [Abstract][Full Text] [Related]
82. Genome-wide identification and expression analysis of the trihelix transcription factor family in tartary buckwheat (Fagopyrum tataricum). Ma Z; Liu M; Sun W; Huang L; Wu Q; Bu T; Li C; Chen H BMC Plant Biol; 2019 Aug; 19(1):344. PubMed ID: 31390980 [TBL] [Abstract][Full Text] [Related]
83. Genomics and breeding innovations for enhancing genetic gain for climate resilience and nutrition traits. Sinha P; Singh VK; Bohra A; Kumar A; Reif JC; Varshney RK Theor Appl Genet; 2021 Jun; 134(6):1829-1843. PubMed ID: 34014373 [TBL] [Abstract][Full Text] [Related]
84. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. Jha UC; Bohra A; Jha R Plant Cell Rep; 2017 Jan; 36(1):1-35. PubMed ID: 27878342 [TBL] [Abstract][Full Text] [Related]
85. Salinity stress response and 'omics' approaches for improving salinity stress tolerance in major grain legumes. Jha UC; Bohra A; Jha R; Parida SK Plant Cell Rep; 2019 Mar; 38(3):255-277. PubMed ID: 30637478 [TBL] [Abstract][Full Text] [Related]
86. Genome-wide investigation of the MADS gene family and dehulling genes in tartary buckwheat (Fagopyrum tataricum). Liu M; Fu Q; Ma Z; Sun W; Huang L; Wu Q; Tang Z; Bu T; Li C; Chen H Planta; 2019 May; 249(5):1301-1318. PubMed ID: 30617544 [TBL] [Abstract][Full Text] [Related]
87. Identification of galloylated propelargonidins and procyanidins in buckwheat grain and quantification of rutin and flavanols from homostylous hybrids originating from F. esculentumxF. homotropicum. Olschläger C; Regos I; Zeller FJ; Treutter D Phytochemistry; 2008 Apr; 69(6):1389-97. PubMed ID: 18325550 [TBL] [Abstract][Full Text] [Related]
88. Comparative proteomic analyses of Tartary buckwheat (Fagopyrum tataricum) seeds at three stages of development. Deng J; Zhao J; Huang J; Damaris RN; Li H; Shi T; Zhu L; Cai F; Zhang X; Chen Q Funct Integr Genomics; 2022 Dec; 22(6):1449-1458. PubMed ID: 36369301 [TBL] [Abstract][Full Text] [Related]
90. Omics and CRISPR-Cas9 Approaches for Molecular Insight, Functional Gene Analysis, and Stress Tolerance Development in Crops. Razzaq MK; Aleem M; Mansoor S; Khan MA; Rauf S; Iqbal S; Siddique KHM Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33525517 [TBL] [Abstract][Full Text] [Related]
91. Genome-wide investigation of the ZF-HD gene family in Tartary buckwheat (Fagopyrum tataricum). Liu M; Wang X; Sun W; Ma Z; Zheng T; Huang L; Wu Q; Tang Z; Bu T; Li C; Chen H BMC Plant Biol; 2019 Jun; 19(1):248. PubMed ID: 31185913 [TBL] [Abstract][Full Text] [Related]
92. Huang Y; Li Z; Wang C; Zou C; Wen W; Shao J; Zhu X Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31337110 [TBL] [Abstract][Full Text] [Related]
93. Development of 50 InDel-based barcode system for genetic identification of tartary buckwheat resources. Sohn HB; Kim SJ; Hong SY; Park SG; Oh DH; Lee S; Nam HY; Nam JH; Kim YH PLoS One; 2021; 16(6):e0250786. PubMed ID: 34081692 [TBL] [Abstract][Full Text] [Related]
94. Differential transcript profiling through cDNA-AFLP showed complexity of rutin biosynthesis and accumulation in seeds of a nutraceutical food crop (Fagopyrum spp.). Gupta N; Naik PK; Chauhan RS BMC Genomics; 2012 Jun; 13():231. PubMed ID: 22686486 [TBL] [Abstract][Full Text] [Related]
95. Regulatory Module FtMYB5/6-FtGBF1- Zhao H; Hu M; Fang Y; Yao Y; Zhao J; Mao Y; Wang T; Wu H; Li C; Li H; Wu Q J Agric Food Chem; 2024 Jun; 72(22):12630-12640. PubMed ID: 38779919 [TBL] [Abstract][Full Text] [Related]
96. Genome-wide identification of the SPL gene family in Tartary Buckwheat (Fagopyrum tataricum) and expression analysis during fruit development stages. Liu M; Sun W; Ma Z; Huang L; Wu Q; Tang Z; Bu T; Li C; Chen H BMC Plant Biol; 2019 Jul; 19(1):299. PubMed ID: 31286919 [TBL] [Abstract][Full Text] [Related]
97. Advances in Multi-Omics Approaches for Molecular Breeding of Black Rot Resistance in Shaw RK; Shen Y; Wang J; Sheng X; Zhao Z; Yu H; Gu H Front Plant Sci; 2021; 12():742553. PubMed ID: 34938304 [No Abstract] [Full Text] [Related]
98. Omics: a tool for resilient rice genetic improvement strategies. Naeem M; Ali Z; Khan A; Sami-Ul-Allah ; Chaudhary HJ; Ashraf J; Baloch FS Mol Biol Rep; 2022 Jun; 49(6):5075-5088. PubMed ID: 35298758 [TBL] [Abstract][Full Text] [Related]
99. Applications of Multi-Omics Technologies for Crop Improvement. Yang Y; Saand MA; Huang L; Abdelaal WB; Zhang J; Wu Y; Li J; Sirohi MH; Wang F Front Plant Sci; 2021; 12():563953. PubMed ID: 34539683 [TBL] [Abstract][Full Text] [Related]
100. Exploring and exploiting genetics and genomics for sweetpotato improvement: Status and perspectives. Yan M; Nie H; Wang Y; Wang X; Jarret R; Zhao J; Wang H; Yang J Plant Commun; 2022 Sep; 3(5):100332. PubMed ID: 35643086 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]