These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 37482577)

  • 41. Photoperiodic synchronization of a circannual reproductive rhythm in sheep: identification of season-specific time cues.
    Woodfill CJ; Wayne NL; Moenter SM; Karsch FJ
    Biol Reprod; 1994 Apr; 50(4):965-76. PubMed ID: 8199277
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A clock for all seasons.
    Helfrich-Förster C; Rieger D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):473-480. PubMed ID: 38896260
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcriptomic changes in the pea aphid, Acyrthosiphon pisum: Effects of the seasonal timer and photoperiod.
    Matsuda N; Numata H; Udaka H
    Comp Biochem Physiol Part D Genomics Proteomics; 2020 Dec; 36():100740. PubMed ID: 32906053
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential expression of circadian clock genes in two strains of beetles reveals candidates related to photoperiodic induction of summer diapause.
    Zhu L; Liu W; Tan QQ; Lei CL; Wang XP
    Gene; 2017 Mar; 603():9-14. PubMed ID: 27956169
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Day-length perception and the photoperiodic regulation of flowering in Arabidopsis.
    Carré IA
    J Biol Rhythms; 2001 Aug; 16(4):415-23. PubMed ID: 11506385
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Germline specification and axis determination in viviparous and oviparous pea aphids: conserved and divergent features.
    Lin GW; Chung CY; Cook CE; Lin MD; Lee WC; Chang CC
    Dev Genes Evol; 2022 Aug; 232(2-4):51-65. PubMed ID: 35678925
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of a gene overexpressed in aphids reared under short photoperiod.
    Ramos S; Moya A; Martínez-Torres D
    Insect Biochem Mol Biol; 2003 Mar; 33(3):289-98. PubMed ID: 12609514
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Human seasonal and circadian studies in Antarctica (Halley, 75°S).
    Arendt J; Middleton B
    Gen Comp Endocrinol; 2018 Mar; 258():250-258. PubMed ID: 28526480
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dim light at night disrupts the short-day response in Siberian hamsters.
    Ikeno T; Weil ZM; Nelson RJ
    Gen Comp Endocrinol; 2014 Feb; 197():56-64. PubMed ID: 24362257
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure of the reproductive system of the sexual generation of the endemic Arctic species Acyrthosiphon svalbardicum and its temperate counterpart Acyrthosiphon pisum (Hemiptera, Aphididae).
    Wieczorek K; Chłond D; Junkiert Ł; Świątek P
    Biol Reprod; 2020 Oct; 103(5):1043-1053. PubMed ID: 33145591
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Seasonal expression patterns of clock-associated genes in the blue mussel Mytilus edulis.
    Chapman EC; O'Dell AR; Meligi NM; Parsons DR; Rotchell JM
    Chronobiol Int; 2017; 34(9):1300-1314. PubMed ID: 29040019
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inheritance patterns of secondary symbionts during sexual reproduction of pea aphid biotypes.
    Peccoud J; Bonhomme J; Mahéo F; de la Huerta M; Cosson O; Simon JC
    Insect Sci; 2014 Jun; 21(3):291-300. PubMed ID: 24382700
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea).
    Miura T; Braendle C; Shingleton A; Sisk G; Kambhampati S; Stern DL
    J Exp Zool B Mol Dev Evol; 2003 Feb; 295(1):59-81. PubMed ID: 12548543
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aphid polyphenisms: trans-generational developmental regulation through viviparity.
    Ogawa K; Miura T
    Front Physiol; 2014; 5():1. PubMed ID: 24478714
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pigment-dispersing factor is involved in photoperiodic control of reproduction in the brown-winged green bug, Plautia stali.
    Hasebe M; Kotaki T; Shiga S
    J Insect Physiol; 2022; 137():104359. PubMed ID: 35041845
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs.
    Hecht V; Knowles CL; Vander Schoor JK; Liew LC; Jones SE; Lambert MJ; Weller JL
    Plant Physiol; 2007 Jun; 144(2):648-61. PubMed ID: 17468223
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of photoperiodic flowering time control in Arabidopsis and barley.
    Steffen A; Fischer A; Staiger D
    Methods Mol Biol; 2014; 1158():285-95. PubMed ID: 24792059
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photoperiodic adaptation of
    Schwarzenberger A; Bartolin P; Wacker A
    Chronobiol Int; 2023 May; 40(5):635-643. PubMed ID: 36994649
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolution of photoperiodic time measurement is independent of the circadian clock in the pitcher-plant mosquito, Wyeomyia smithii.
    Emerson KJ; Dake SJ; Bradshaw WE; Holzapfel CM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Apr; 195(4):385-91. PubMed ID: 19190920
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The seasons within: a theoretical perspective on photoperiodic entrainment and encoding.
    Schmal C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):549-564. PubMed ID: 37659985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.