These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37483034)

  • 1. Effect of additional dead space using end-tidal CO2 measurement on ventilating preterm infants: An experimental study.
    Mur L; Annon-Eberharter N; Gombos P; Wald M
    Technol Health Care; 2024; 32(2):779-785. PubMed ID: 37483034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dead space washout by intentional leakage flow during conventional ventilation of premature infants-an experimental study.
    Schöber M; Bohnhorst B; Annon-Eberharter N; Wald M
    Pediatr Pulmonol; 2022 Sep; 57(9):1998-2002. PubMed ID: 35355449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instrumental dead space: A glass ceiling for extremely low birth weight preterm infants? A dead space washout bench study.
    Danan C; Tauzin M; Jung C; Carbonnier B; Dassieu G; Decobert F; Caeymaex L
    Pediatr Pulmonol; 2023 May; 58(5):1514-1519. PubMed ID: 36785523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the Y-piece of the ventilation circuit on ventilation requirements in extremely low birth weight infants.
    Wald M; Jeitler V; Lawrenz K; Weninger M; Kirchner L
    Intensive Care Med; 2005 Aug; 31(8):1095-100. PubMed ID: 15999252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of Endotracheal Tube Connector Dead Space Improves Ventilation: A Bench Test on a Model Lung Simulating an Extremely Low Birth Weight Neonate.
    Ivanov VA
    Respir Care; 2016 Feb; 61(2):155-61. PubMed ID: 26577200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of inspiratory flow rate on the efficiency of carbon dioxide removal at tidal volumes below instrumental dead space.
    Hurley EH; Keszler M
    Arch Dis Child Fetal Neonatal Ed; 2017 Mar; 102(2):F126-F130. PubMed ID: 27515984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the Effects of Two Different Levels of Hyperoxygenation on Gas Exchange During Open Endotracheal Suctioning: A Randomized Crossover Study.
    Vianna JR; Pires Di Lorenzo VA; Simões MM; Jamami M
    Respir Care; 2017 Jan; 62(1):92-101. PubMed ID: 28003557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective ventilation at conventional rates with tidal volume below instrumental dead space: a bench study.
    Keszler M; Montaner MB; Abubakar K
    Arch Dis Child Fetal Neonatal Ed; 2012 May; 97(3):F188-92. PubMed ID: 22102635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients.
    Campbell RS; Davis K; Johannigman JA; Branson RD
    Respir Care; 2000 Mar; 45(3):306-12. PubMed ID: 10771799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time and volume dependence of dead space in healthy and surfactant-depleted rat lungs during spontaneous breathing and mechanical ventilation.
    Dassow C; Schwenninger D; Runck H; Guttmann J
    J Appl Physiol (1985); 2013 Nov; 115(9):1268-74. PubMed ID: 23950167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory deadspace measurements in neonates during extracorporeal membrane oxygenation.
    Arnold JH; Thompson JE; Benjamin PK
    Crit Care Med; 1993 Dec; 21(12):1895-900. PubMed ID: 8252895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An appropriate inspiratory flow pattern can enhance CO2 exchange, facilitating protective ventilation of healthy lungs.
    Sturesson LW; Malmkvist G; Allvin S; Collryd M; Bodelsson M; Jonson B
    Br J Anaesth; 2016 Aug; 117(2):243-9. PubMed ID: 27440637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. End-tidal CO2 as a function of tidal volume in mechanically ventilated infants.
    Greer KJ; Bowen WA; Krauss AN
    Am J Perinatol; 2003 Nov; 20(8):447-51. PubMed ID: 14703593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of deadspace free ventilatory measurements for lung function testing in ventilated newborns: a simulation study.
    Foitzik B; Schaller P; Schmidt M; Schmalisch G
    J Clin Monit Comput; 2000; 16(8):563-73. PubMed ID: 12580232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Halving the Volume of AnaConDa: Evaluation of a New Small-Volume Anesthetic Reflector in a Test Lung Model.
    Bomberg H; Meiser F; Daume P; Bellgardt M; Volk T; Sessler DI; Groesdonk HV; Meiser A
    Anesth Analg; 2019 Aug; 129(2):371-379. PubMed ID: 29787413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elimination of ventilator dead space during synchronized ventilation in premature infants.
    Claure N; D'Ugard C; Bancalari E
    J Pediatr; 2003 Sep; 143(3):315-20. PubMed ID: 14517512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of gestational age on dead space and alveolar ventilation in preterm infants ventilated with volume guarantee.
    Neumann RP; Pillow JJ; Thamrin C; Larcombe AN; Hall GL; Schulzke SM
    Neonatology; 2015; 107(1):43-9. PubMed ID: 25376986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory deadspace measurements in neonates with congenital diaphragmatic hernia.
    Arnold JH; Bower LK; Thompson JE
    Crit Care Med; 1995 Feb; 23(2):371-5. PubMed ID: 7867362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bench-to-bedside review: adjuncts to mechanical ventilation in patients with acute lung injury.
    Rouby JJ; Lu Q
    Crit Care; 2005 Oct; 9(5):465-71. PubMed ID: 16277735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determinants of pulmonary dead space in ventilated newborn infants.
    Dassios T; Kaltsogianni O; Greenough A
    Early Hum Dev; 2017 May; 108():29-32. PubMed ID: 28371672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.