These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37483144)

  • 1. 3D-Printed Artificial Cilia Arrays: A Versatile Tool for Customizable Mechanosensing.
    Glass P; Shar A; Pemberton C; Nguyen E; Park SH; Joung D
    Adv Sci (Weinh); 2023 Sep; 10(26):e2303164. PubMed ID: 37483144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-inspired highly flexible dual-mode electronic cilia.
    Liu YF; Fu YF; Li YQ; Huang P; Xu CH; Hu N; Fu SY
    J Mater Chem B; 2018 Feb; 6(6):896-902. PubMed ID: 32254369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piezoresistive Carbon Nanofiber-Based Cilia-Inspired Flow Sensor.
    Sengupta D; Trap D; Kottapalli AAGP
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 31991865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Cilia Sensors with Graphene Sensing Elements Fabricated Using 3D Printing and Casting.
    Kamat AM; Pei Y; Kottapalli AGP
    Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31262009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-cost sensor-integrated 3D-printed personalized prosthetic hands for children with amniotic band syndrome: A case study in sensing pressure distribution on an anatomical human-machine interface (AHMI) using 3D-printed conformal electrode arrays.
    Tong Y; Kucukdeger E; Halper J; Cesewski E; Karakozoff E; Haring AP; McIlvain D; Singh M; Khandelwal N; Meholic A; Laheri S; Sharma A; Johnson BN
    PLoS One; 2019; 14(3):e0214120. PubMed ID: 30921360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid-Response, Low Detection Limit, and High-Sensitivity Capacitive Flexible Tactile Sensor Based on Three-Dimensional Porous Dielectric Layer for Wearable Electronic Skin.
    Qiu J; Guo X; Chu R; Wang S; Zeng W; Qu L; Zhao Y; Yan F; Xing G
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40716-40725. PubMed ID: 31596567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin.
    Liu C; Huang N; Xu F; Tong J; Chen Z; Gui X; Fu Y; Lao C
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of 3D-printing technologies for wearable and implantable bio-integrated sensors.
    Rachim VP; Park SM
    Essays Biochem; 2021 Aug; 65(3):491-502. PubMed ID: 33860794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges.
    Ding Y; Xu T; Onyilagha O; Fong H; Zhu Z
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6685-6704. PubMed ID: 30689335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Fabrication of 3D Porous Sponges Coated with Synergistic Carbon Black/Multiwalled Carbon Nanotubes for Tactile Sensing Applications.
    Al-Handarish Y; Omisore OM; Duan W; Chen J; Zebang L; Akinyemi TO; Du W; Li H; Wang L
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 33003491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printed, Soft, Nanostructured Strain Sensors for Monitoring of Structural Health and Human Physiology.
    Herbert R; Lim HR; Yeo WH
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25020-25030. PubMed ID: 32393022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printed Stretchable Tactile Sensors.
    Guo SZ; Qiu K; Meng F; Park SH; McAlpine MC
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28474793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors.
    Liu X; Liu D; Lee JH; Zheng Q; Du X; Zhang X; Xu H; Wang Z; Wu Y; Shen X; Cui J; Mai YW; Kim JK
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2282-2294. PubMed ID: 30582684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E-Skin Bimodal Sensors for Robotics and Prosthesis Using PDMS Molds Engraved by Laser.
    Dos Santos A; Pinela N; Alves P; Santos R; Farinha R; Fortunato E; Martins R; Águas H; Igreja R
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30795531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of 3D Printed Flexible Pressure Sensors into Physical Interfaces for Wearable Robots.
    Langlois K; Roels E; Van De Velde G; Espadinha C; Van Vlerken C; Verstraten T; Vanderborght B; Lefeber D
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33808626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature and Strain Compensation for Flexible Sensors Based on Thermosensation.
    Wang L; Zhu R; Li G
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1953-1961. PubMed ID: 31816229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screen-Printed Resistive Tactile Sensor for Monitoring Tissue Interaction Forces on a Surgical Magnetic Microgripper.
    Aubeeluck DA; Forbrigger C; Taromsari SM; Chen T; Diller E; Naguib HE
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34008-34022. PubMed ID: 37403926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics.
    Stanton MM; Trichet-Paredes C; Sánchez S
    Lab Chip; 2015 Apr; 15(7):1634-7. PubMed ID: 25632887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A liquid-free conducting ionoelastomer for 3D printable multifunctional self-healing electronic skin with tactile sensing capabilities.
    Wu Q; Xu Y; Han S; Zhu J; Chen A; Zhang J; Chen Y; Yang X; Huang J; Guan L
    Mater Horiz; 2023 Aug; 10(9):3610-3621. PubMed ID: 37334834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.