BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37483386)

  • 1.
    Scanlon KR; Keb G; Wolf K; Jewett TJ; Fields KA
    Front Cell Infect Microbiol; 2023; 13():1232391. PubMed ID: 37483386
    [No Abstract]   [Full Text] [Related]  

  • 2. Chlamydia trachomatis TmeA Directly Activates N-WASP To Promote Actin Polymerization and Functions Synergistically with TarP during Invasion.
    Keb G; Ferrell J; Scanlon KR; Jewett TJ; Fields KA
    mBio; 2021 Jan; 12(1):. PubMed ID: 33468693
    [No Abstract]   [Full Text] [Related]  

  • 3. The Chlamydia trachomatis secreted effector TmeA hijacks the N-WASP-ARP2/3 actin remodeling axis to facilitate cellular invasion.
    Faris R; McCullough A; Andersen SE; Moninger TO; Weber MM
    PLoS Pathog; 2020 Sep; 16(9):e1008878. PubMed ID: 32946535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct roles of the Chlamydia trachomatis effectors TarP and TmeA in the regulation of formin and Arp2/3 during entry.
    Romero MD; Carabeo RA
    J Cell Sci; 2022 Oct; 135(19):. PubMed ID: 36093837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence-Reported Allelic Exchange Mutagenesis Reveals a Role for Chlamydia trachomatis TmeA in Invasion That Is Independent of Host AHNAK.
    McKuen MJ; Mueller KE; Bae YS; Fields KA
    Infect Immun; 2017 Dec; 85(12):. PubMed ID: 28970272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamin-dependent entry of Chlamydia trachomatis is sequentially regulated by the effectors TarP and TmeA.
    Romero MD; Carabeo RA
    Nat Commun; 2024 Jun; 15(1):4926. PubMed ID: 38858371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Floxed-Cassette Allelic Exchange Mutagenesis Enables Markerless Gene Deletion in Chlamydia trachomatis and Can Reverse Cassette-Induced Polar Effects.
    Keb G; Hayman R; Fields KA
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30224436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydia trachomatis Tarp cooperates with the Arp2/3 complex to increase the rate of actin polymerization.
    Jiwani S; Ohr RJ; Fischer ER; Hackstadt T; Alvarado S; Romero A; Jewett TJ
    Biochem Biophys Res Commun; 2012 Apr; 420(4):816-21. PubMed ID: 22465117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted Disruption of Chlamydia trachomatis Invasion by in Trans Expression of Dominant Negative Tarp Effectors.
    Parrett CJ; Lenoci RV; Nguyen B; Russell L; Jewett TJ
    Front Cell Infect Microbiol; 2016; 6():84. PubMed ID: 27602332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence-Reported Allelic Exchange Mutagenesis-Mediated Gene Deletion Indicates a Requirement for Chlamydia trachomatis Tarp during
    Ghosh S; Ruelke EA; Ferrell JC; Bodero MD; Fields KA; Jewett TJ
    Infect Immun; 2020 Apr; 88(5):. PubMed ID: 32152196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamin-dependent entry of
    Romero MD; Carabeo RA
    Res Sq; 2023 Sep; ():. PubMed ID: 37841835
    [No Abstract]   [Full Text] [Related]  

  • 12. Rac interacts with Abi-1 and WAVE2 to promote an Arp2/3-dependent actin recruitment during chlamydial invasion.
    Carabeo RA; Dooley CA; Grieshaber SS; Hackstadt T
    Cell Microbiol; 2007 Sep; 9(9):2278-88. PubMed ID: 17501982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydial Lytic Exit from Host Cells Is Plasmid Regulated.
    Yang C; Starr T; Song L; Carlson JH; Sturdevant GL; Beare PA; Whitmire WM; Caldwell HD
    mBio; 2015 Nov; 6(6):e01648-15. PubMed ID: 26556273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlamydia trachomatis Subverts Alpha-Actinins To Stabilize Its Inclusion.
    Haines A; Wesolowski J; Paumet F
    Microbiol Spectr; 2023 Feb; 11(1):e0261422. PubMed ID: 36651786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathogenic Puppetry: Manipulation of the Host Actin Cytoskeleton by
    Caven L; Carabeo RA
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31877733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conserved Tarp actin binding domain is important for chlamydial invasion.
    Jewett TJ; Miller NJ; Dooley CA; Hackstadt T
    PLoS Pathog; 2010 Jul; 6(7):e1000997. PubMed ID: 20657821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling.
    Chen YS; Bastidas RJ; Saka HA; Carpenter VK; Richards KL; Plano GV; Valdivia RH
    PLoS Pathog; 2014 Feb; 10(2):e1003954. PubMed ID: 24586162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross Talk between ARF1 and RhoA Coordinates the Formation of Cytoskeletal Scaffolds during Chlamydia Infection.
    Haines A; Wesolowski J; Ryan NM; Monteiro-BrĂ¡s T; Paumet F
    mBio; 2021 Dec; 12(6):e0239721. PubMed ID: 34903051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actin recruitment to the Chlamydia inclusion is spatiotemporally regulated by a mechanism that requires host and bacterial factors.
    Chin E; Kirker K; Zuck M; James G; Hybiske K
    PLoS One; 2012; 7(10):e46949. PubMed ID: 23071671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Type III Secretion Effector CteG Mediates Host Cell Lytic Exit of
    Pereira IS; Pais SV; Borges V; Borrego MJ; Gomes JP; Mota LJ
    Front Cell Infect Microbiol; 2022; 12():902210. PubMed ID: 35903198
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.