BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 37483607)

  • 1. Interrogation of human microglial phagocytosis by CRISPR genome editing.
    Chang JC; Wang CY; Lin S
    Front Immunol; 2023; 14():1169725. PubMed ID: 37483607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TREM2 alters the phagocytic, apoptotic and inflammatory response to Aβ
    Akhter R; Shao Y; Formica S; Khrestian M; Bekris LM
    Mol Immunol; 2021 Mar; 131():171-179. PubMed ID: 33461764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR based targeted genome editing of Chlamydomonas reinhardtii using programmed Cas9-gRNA ribonucleoprotein.
    Dhokane D; Bhadra B; Dasgupta S
    Mol Biol Rep; 2020 Nov; 47(11):8747-8755. PubMed ID: 33074412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 Ribonucleoprotein-mediated Precise Gene Editing by Tube Electroporation.
    Ma L; Jang L; Chen J; Song J; Yang D; Zhang J; Chen YE; Xu J
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31282887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CD33 short isoform is a gain-of-function variant that enhances Aβ
    Bhattacherjee A; Jung J; Zia S; Ho M; Eskandari-Sedighi G; St Laurent CD; McCord KA; Bains A; Sidhu G; Sarkar S; Plemel JR; Macauley MS
    Mol Neurodegener; 2021 Mar; 16(1):19. PubMed ID: 33766097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.
    Soares Medeiros LC; South L; Peng D; Bustamante JM; Wang W; Bunkofske M; Perumal N; Sanchez-Valdez F; Tarleton RL
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Editing Using Cas9 Ribonucleoprotein Is Effective for Introducing
    Hamada T; Yokoyama S; Akahane T; Matsuo K; Tanimoto A
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting targeted genome editing using the hei-tag.
    Thumberger T; Tavhelidse-Suck T; Gutierrez-Triana JA; Cornean A; Medert R; Welz B; Freichel M; Wittbrodt J
    Elife; 2022 Mar; 11():. PubMed ID: 35333175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Editing in Green Alga Chlamydomonas reinhardtii via CRISPR-Cas9 Ribonucleoproteins.
    Kelterborn S; Boehning F; Sizova I; Baidukova O; Evers H; Hegemann P
    Methods Mol Biol; 2022; 2379():45-65. PubMed ID: 35188655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 Endonuclease-Mediated Mouse Genome Editing of One-Cell and/or Two-Cell Embryos by Electroporation, and the Use of Rad51 to Enhance Knock-In Allele Homozygosity via Interhomolog Repair Mechanism.
    Garza S; Paik R
    Methods Mol Biol; 2023; 2631():253-266. PubMed ID: 36995671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of Capsicum annuum.
    Kim H; Choi J; Won KH
    BMC Plant Biol; 2020 Oct; 20(1):449. PubMed ID: 33004008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of lipid-mediated CRISPR-Cas9 genome editing techniques.
    Ringer KP; Roth MG; Garey MS; Piorczynski TB; Suli A; Hansen JM; Alder JK
    Cell Biol Int; 2018 Jul; 42(7):849-858. PubMed ID: 29457665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Editing the immune system in vivo in mice using CRISPR/Cas9 ribonucleoprotein (RNP)-mediated gene editing of transplanted hematopoietic stem cells.
    Wang R; Graham S; Gao L; Tam J; Levesque MC
    Methods; 2021 Oct; 194():30-36. PubMed ID: 33422676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 16. CRISPR-Cas9 system: A new-fangled dawn in gene editing.
    Gupta D; Bhattacharjee O; Mandal D; Sen MK; Dey D; Dasgupta A; Kazi TA; Gupta R; Sinharoy S; Acharya K; Chattopadhyay D; Ravichandiran V; Roy S; Ghosh D
    Life Sci; 2019 Sep; 232():116636. PubMed ID: 31295471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The protocol of tagging endogenous proteins with fluorescent tags using CRISPR-Cas9 genome editing.
    Wu ZS; Gao Y; Du YT; Dang S; He KM
    Yi Chuan; 2023 Feb; 45(2):165-175. PubMed ID: 36927663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple and highly efficient method for multi-allelic CRISPR-Cas9 editing in primary cell cultures.
    Hoellerbauer P; Kufeld M; Arora S; Wu HJ; Feldman HM; Paddison PJ
    Cancer Rep (Hoboken); 2020 Oct; 3(5):e1269. PubMed ID: 32721120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats.
    Zhang J; Liu J; Yang W; Cui M; Dai B; Dong Y; Yang J; Zhang X; Liu D; Liang H; Cang M
    Theriogenology; 2019 Jul; 132():1-11. PubMed ID: 30981084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-targeted CRISPR/Cas9 nanomedicine for effective glioblastoma therapy.
    Ruan W; Jiao M; Xu S; Ismail M; Xie X; An Y; Guo H; Qian R; Shi B; Zheng M
    J Control Release; 2022 Nov; 351():739-751. PubMed ID: 36174804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.