BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37483870)

  • 1. Inside out: transforming images of lab-grown plants for machine learning applications in agriculture.
    Krosney AE; Sotoodeh P; Henry CJ; Beck MA; Bidinosti CP
    Front Artif Intell; 2023; 6():1200977. PubMed ID: 37483870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breast cancer detection using synthetic mammograms from generative adversarial networks in convolutional neural networks.
    Guan S; Loew M
    J Med Imaging (Bellingham); 2019 Jul; 6(3):031411. PubMed ID: 30915386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification.
    Altini N; Marvulli TM; Zito FA; Caputo M; Tommasi S; Azzariti A; Brunetti A; Prencipe B; Mattioli E; De Summa S; Bevilacqua V
    Comput Methods Programs Biomed; 2023 Jun; 234():107511. PubMed ID: 37011426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Data Augmentation Generative Adversarial Network for Object Detection.
    Lee H; Kang S; Chung K
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparative Analysis of the Novel Conditional Deep Convolutional Neural Network Model, Using Conditional Deep Convolutional Generative Adversarial Network-Generated Synthetic and Augmented Brain Tumor Datasets for Image Classification.
    Onakpojeruo EP; Mustapha MT; Ozsahin DU; Ozsahin I
    Brain Sci; 2024 May; 14(6):. PubMed ID: 38928561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GACN: Generative Adversarial Classified Network for Balancing Plant Disease Dataset and Plant Disease Recognition.
    Wang X; Cao W
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network.
    Hazra D; Byun YC; Kim WJ
    Comput Methods Programs Biomed; 2022 Sep; 224():107019. PubMed ID: 35878483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton.
    Sapkota BB; Popescu S; Rajan N; Leon RG; Reberg-Horton C; Mirsky S; Bagavathiannan MV
    Sci Rep; 2022 Nov; 12(1):19580. PubMed ID: 36379963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small training dataset convolutional neural networks for application-specific super-resolution microscopy.
    Mannam V; Howard S
    J Biomed Opt; 2023 Mar; 28(3):036501. PubMed ID: 36925620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-domain medical image translation generation for lung image classification based on generative adversarial networks.
    Chen Y; Lin Y; Xu X; Ding J; Li C; Zeng Y; Xie W; Huang J
    Comput Methods Programs Biomed; 2023 Feb; 229():107200. PubMed ID: 36525713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved automatic detection of herpesvirus secondary envelopment stages in electron microscopy by augmenting training data with synthetic labelled images generated by a generative adversarial network.
    Shaga Devan K; Walther P; von Einem J; Ropinski T; A Kestler H; Read C
    Cell Microbiol; 2021 Feb; 23(2):e13280. PubMed ID: 33073426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.
    Ahmad B; Sun J; You Q; Palade V; Mao Z
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraclass Image Augmentation for Defect Detection Using Generative Adversarial Neural Networks.
    Sampath V; Maurtua I; Aguilar Martín JJ; Iriondo A; Lluvia I; Aizpurua G
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combating data incompetence in pollen images detection and classification for pollinosis prevention.
    Khanzhina N; Filchenkov A; Minaeva N; Novoselova L; Petukhov M; Kharisova I; Pinaeva J; Zamorin G; Putin E; Zamyatina E; Shalyto A
    Comput Biol Med; 2022 Jan; 140():105064. PubMed ID: 34861642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network.
    Rahnemoonfar M; Johnson J; Paden J
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images.
    Motamed S; Rogalla P; Khalvati F
    Inform Med Unlocked; 2021; 27():100779. PubMed ID: 34841040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generative Adversarial Networks for Morphological-Temporal Classification of Stem Cell Images.
    Witmer A; Bhanu B
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data Augmentation for Deep-Learning-Based Multiclass Structural Damage Detection Using Limited Information.
    Dunphy K; Fekri MN; Grolinger K; Sadhu A
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid diagnosis of Covid-19 infections by a progressively growing GAN and CNN optimisation.
    Gulakala R; Markert B; Stoffel M
    Comput Methods Programs Biomed; 2023 Feb; 229():107262. PubMed ID: 36463675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.